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Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

xiii



This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at 
https://tinymlbook.com/supplemental.

If you have a technical question or a problem using the code examples, please send 
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered 
with this book, you may use it in your programs and documentation. You do not 
need to contact us for permission unless you’re reproducing a significant portion of 
the code. For example, writing a program that uses several chunks of code from this 
book does not require permission. Selling or distributing examples from O’Reilly 
books does require permission. Answering a question by citing this book and quoting 
example code does not require permission. Incorporating a significant amount of 
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually 
includes the title, author, publisher, and ISBN. For example: “TinyML by Pete Warden 
and Daniel Situnayake (O’Reilly). Copyright Pete Warden and Daniel Situnayake, 
978-1-492-05204-3.”

If you feel your use of code examples falls outside fair use or the permission given 
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/tiny.

Email tinyml-book@googlegroups.com to comment or ask technical questions about
this book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction

The goal of this book is to show how any developer with basic experience using a
command-line terminal and code editor can get started building their own projects
running machine learning (ML) on embedded devices.

When I first joined Google in 2014, I discovered a lot of internal projects that I had
no idea existed, but the most exciting was the work that the OK Google team were
doing. They were running neural networks that were just 14 kilobytes (KB) in size!
They needed to be so small because they were running on the digital signal processors
(DSPs) present in most Android phones, continuously listening for the “OK Google”
wake words, and these DSPs had only tens of kilobytes of RAM and flash memory.
The team had to use the DSPs for this job because the main CPU was powered off to
conserve battery, and these specialized chips use only a few milliwatts (mW) of
power.

Coming from the image side of deep learning, I’d never seen networks so small, and
the idea that you could use such low-power chips to run neural models stuck with
me. As I worked on getting TensorFlow and later TensorFlow Lite running on
Android and iOS devices, I remained fascinated by the possibilities of working with
even simple chips. I learned that there were other pioneering projects in the audio
world (like Pixel’s Music IQ) for predictive maintenance (like PsiKick) and even in
the vision world (Qualcomm’s Glance camera module).

It became clear to me that there was a whole new class of products emerging, with the
key characteristics that they used ML to make sense of noisy sensor data, could run
using a battery or energy harvesting for years, and cost only a dollar or two. One term
I heard repeatedly was “peel-and-stick sensors,” for devices that required no battery
changes and could be applied anywhere in an environment and forgotten. Making
these products real required ways to turn raw sensor data into actionable information
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locally, on the device itself, since the energy costs of transmitting streams anywhere
have proved to be inherently too high to be practical.

This is where the idea of TinyML comes in. Long conversations with colleagues
across industry and academia have led to the rough consensus that if you can run a
neural network model at an energy cost of below 1 mW, it makes a lot of entirely new
applications possible. This might seem like a somewhat arbitrary number, but if you
translate it into concrete terms, it means a device running on a coin battery has a life‐
time of a year. That results in a product that’s small enough to fit into any environ‐
ment and able to run for a useful amount of time without any human intervention.

I’m going to be jumping straight into using some technical terms to
talk about what this book will be covering, but don’t worry if some
of them are unfamiliar to you; we define their meaning the first
time we use them.

At this point, you might be wondering about platforms like the Raspberry Pi, or NVI‐
DIA’s Jetson boards. These are fantastic devices, and I use them myself frequently, but
even the smallest Pi is similar to a mobile phone’s main CPU and so draws hundreds
of milliwatts. Keeping one running even for a few days requires a battery similar to a
smartphone’s, making it difficult to build truly untethered experiences. NVIDIA’s Jet‐
son is based on a powerful GPU, and we’ve seen it use up to 12 watts of power when
running at full speed, so it’s even more difficult to use without a large external power
supply. This is usually not a problem in automotive or robotics applications, since the
mechanical parts demand a large power source themselves, but it does make it tough
to use these platforms for the kinds of products I’m most interested in, which need to
operate without a wired power supply. Happily, when using them the lack of resource
constraints means that frameworks like TensorFlow, TensorFlow Lite, and NVIDIA’s
TensorRT are available, since they’re usually based on Linux-capable Arm Cortex-A
CPUs, which have hundreds of megabytes of memory. This book will not be focused
on describing how to run on those platforms for the reason just mentioned, but if
you’re interested, there are a lot of resources and documentation available; for exam‐
ple, see TensorFlow Lite’s mobile documentation.

Another characteristic I care about is cost. The cheapest Raspberry Pi Zero is $5 for
makers, but it is extremely difficult to buy that class of chip in large numbers at that
price. Purchases of the Zero are usually restricted by quantity, and while the prices for
industrial purchases aren’t transparent, it’s clear that $5 is definitely unusual. By con‐
trast, the cheapest 32-bit microcontrollers cost much less than a dollar each. This low
price has made it possible for manufacturers to replace traditional analog or electro‐
mechanical control circuits with software-defined alternatives for everything from
toys to washing machines. I’m hoping we can use the ubiquity of microcontrollers in
these devices to introduce artificial intelligence as a software update, without requir‐
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ing a lot of changes to existing designs. It should also make it possible to get large
numbers of smart sensors deployed across environments like buildings or wildlife
reserves without the costs outweighing the benefits or funds available.

Embedded Devices
The definition of TinyML as having an energy cost below 1 mW does mean that we
need to look to the world of embedded devices for our hardware platforms. Until a
few years ago, I wasn’t familiar with them myself—they were shrouded in mystery for
me. Traditionally they had been 8-bit devices and used obscure and proprietary tool‐
chains, so it seemed very intimidating to get started with any of them. A big step for‐
ward came when Arduino introduced a user-friendly integrated development
environment (IDE) along with standardized hardware. Since then, 32-bit CPUs have
become the standard, largely thanks to Arm’s Cortex-M series of chips. When I
started to prototype some ML experiments a couple of years ago, I was pleasantly sur‐
prised by how relatively straightforward the development process had become.

Embedded devices still come with some tough resource constraints, though. They
often have only a few hundred kilobytes of RAM, or sometimes much less than that,
and have similar amounts of flash memory for persistent program and data storage.
A clock speed of just tens of megahertz is not unusual. They will definitely not have
full Linux (since that requires a memory controller and at least one megabyte of
RAM), and if there is an operating system, it may well not provide all or any of the
POSIX or standard C library functions you expect. Many embedded systems avoid
using dynamic memory allocation functions like new or malloc() because they’re
designed to be reliable and long-running, and it’s extremely difficult to ensure that if
you have a heap that can be fragmented. You might also find it tricky to use a debug‐
ger or other familiar tools from desktop development, since the interfaces you’ll be
using to access the chip are very specialized.

There were some nice surprises as I learned embedded development, though. Having
a system with no other processes to interrupt your program can make building a
mental model of what’s happening very simple, and the straightforward nature of a
processor without branch prediction or instruction pipelining makes manual assem‐
bly optimization a lot easier than on more complex CPUs. I also find a simple joy in
seeing LEDs light up on a miniature computer that I can balance on a fingertip,
knowing that it’s running millions of instructions a second to understand the world
around it.

Changing Landscape
It’s only recently that we’ve been able to run ML on microcontrollers at all, and the
field is very young, which means hardware, software, and research are all changing
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extremely quickly. This book is a based on a snapshot of the world as it existed in
2019, which in this area means some parts were out of date before we’d even finished
writing the last chapter. We’ve tried to make sure we’re relying on hardware platforms
that will be available over the long term, but it’s likely that devices will continue to
improve and evolve. The TensorFlow Lite software framework that we use has a sta‐
ble API, and we’ll continue to support the examples we give in the text over time, but
we also provide web links to the very latest versions of all our sample code and docu‐
mentation. You can expect to see reference applications covering more use cases than
we have in this book being added to the TensorFlow repository, for example. We also
aim to focus on skills like debugging, model creation, and developing an understand‐
ing of how deep learning works, which will remain useful even as the infrastructure
you’re using changes.

We want this book to give you the foundation you need to develop embedded ML
products to solve problems you care about. Hopefully we’ll be able to start you along
the road of building some of the exciting new applications I’m certain will be emerg‐
ing over the next few years in this domain.

—Pete Warden
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CHAPTER 2

Getting Started

In this chapter, we cover what you need to know to begin building and modifying
machine learning applications on low-power devices. All of the software is free, and
the hardware development kits are available for less than $30, so the biggest challenge
is likely to be the unfamiliarity of the development environment. To help with that,
throughout the chapter we recommend a well-lit path of tools that we’ve found work
well together.

Who Is This Book Aimed At?
To build a TinyML project, you will need to know a bit about both machine learning
and embedded software development. Neither of these are common skills, and very
few people are experts on both, so this book will start with the assumption that you
have no background in either of these. The only requirements are that you have some
familiarity running commands in the terminal (or Command Prompt on Windows),
and are able to load a program source file into an editor, make alterations, and save it.
Even if that sounds daunting, we walk you through everything we discuss step by
step, like a good recipe, including screenshots (and screencasts online) in many cases,
so we’re hoping to make this as accessible as possible to a wide audience.

We’ll show you some practical applications of machine learning on embedded devi‐
ces, using projects like simple speech recognition, detecting gestures with a motion
sensor, and detecting people with a camera sensor. We want to get you comfortable
with building these programs yourself, and then extending them to solve problems
you care about. For example, you might want to modify the speech recognition to
detect barks instead of human speech, or spot dogs instead of people, and we give you
ideas on how to tackle those modifications yourself. Our goal is to provide you with
the tools you need to start building exciting applications you care about.
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What Hardware Do You Need?
You’ll need a laptop or desktop computer with a USB port. This will be your main
programming environment, where you edit and compile the programs that you run
on the embedded device. You’ll connect this computer to the embedded device using
the USB port and a specialized adapter that will depend on what development hard‐
ware you’re using. The main computer can be running Windows, Linux, or macOS.
For most of the examples we train our machine learning models in the cloud, using
Google Colab, so you don’t need to worry about having a specially equipped com‐
puter.

You will also need an embedded development board to test your programs on. To do
something interesting you’ll need a microphone, accelerometers, or a camera
attached, and you want something small enough to build into a realistic prototype
project, along with a battery. This was tough to find when we started this book, so we
worked together with the chip manufacturer Ambiq and maker retailer SparkFun to
produce the $15 SparkFun Edge board. All of the book’s examples will work with this
device.

The second revision of the SparkFun Edge board, the SparkFun
Edge 2, is due to be released after this book has been published. All
of the projects in this book are guaranteed to work with the new
board. However, the code and the instructions for deployment will
vary slightly from what is printed here. Don’t worry—each project
chapter links to a README.md that contains up-to-date instruc‐
tions for deploying each example to the SparkFun Edge 2.

We also offer instructions on how to run many of the projects using the Arduino and
Mbed development environments. We recommend the Arduino Nano 33 BLE Sense
board, and the STM32F746G Discovery kit development board for Mbed, though all
of the projects should be adaptable to other devices if you can capture the sensor data
in the formats needed. Table 2-1 shows which devices we’ve included in each project
chapter.

Table 2-1. Devices written about for each project

Project name Chapter SparkFun Edge Arduino Nano 33 BLE Sense STM32F746G Discovery kit
Hello world Chapter 5 Included Included Included

Wake-word detection Chapter 7 Included Included Included

Person detection Chapter 9 Included Included Not included
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Project name Chapter SparkFun Edge Arduino Nano 33 BLE Sense STM32F746G Discovery kit
Magic wand Chapter 11 Included Included Not included

What If the Board I Want to Use Isn’t Listed Here?
The source code for the projects in this book is hosted on GitHub, and we continually
update it to support additional devices. Each chapter links to a project README.md
that lists all of the supported devices and has instructions on how to deploy to them,
so you can check there to find out if the device you’d like to use is already supported.

If you have some embedded development experience, it’s easy to port the examples to
new devices even if they’re not listed.

None of these projects require any additional electronic components, aside from per‐
son detection, which will require a camera module. If you’re using the Arduino, you’ll
need the Arducam Mini 2MP Plus, and if you’re using the SparkFun Edge, you’ll need
SparkFun’s Himax HM01B0 breakout.

What Software Do You Need?
All of the projects in this book are based around the TensorFlow Lite for Microcon‐
trollers framework. This is a variant of the TensorFlow Lite framework designed to
run on embedded devices with only a few tens of kilobytes of memory available. All
of the projects are included as examples in the library, and it’s open source, so you can
find it on GitHub.

Since the code examples in this book are part of an active open
source project, they are continually changing and evolving as we
add optimizations, fix bugs, and support additional devices. It’s
likely you’ll spot some differences between the code printed in the
book and the most recent code in the TensorFlow repository. That
said, although the code might drift a little over time, the basic prin‐
ciples you’ll learn here will remain the same.

You’ll need some kind of editor to examine and modify your code. If you’re not sure
which one you should use, Microsoft’s free VS Code application is a great place to
start. It works on macOS, Linux, and Windows, and has a lot of handy features like
syntax highlighting and autocomplete. If you already have a favorite editor you can
use that, instead; we won’t be doing extensive modifications for any of our projects.

You’ll also need somewhere to enter commands. On macOS and Linux this is known
as the terminal, and you can find it in your Applications folder under that name. On
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Windows it’s known as the Command Prompt, which you can find in your Start
menu.

There will also be extra software that you’ll need to communicate with your embed‐
ded development board, but this will depend on what device you have. If you’re using
either the SparkFun Edge board or an Mbed device, you’ll need to have Python
installed for some build scripts, and then you can use GNU Screen on Linux or
macOS or Tera Term on Windows to access the debug logging console, showing text
output from the embedded device. If you have an Arduino board, everything you
need is installed as part of the IDE, so you just need to download the main software
package.

What Do We Hope You’ll Learn?
The goal of this book is to help more applications in this new space emerge. There is
no one “killer app” for TinyML right now, and there might never be, but we know
from experience that there are a lot of problems out there in the world that can be
solved using the toolbox it offers. We want to familiarize you with the possible solu‐
tions. We want to take domain experts from agriculture, space exploration, medicine,
consumer goods, and any other areas with addressable issues and give them an
understanding of how to solve problems themselves, or at the very least communicate
what problems are solvable with these techniques.

With that in mind, we’re hoping that when you finish this book you’ll have a good
overview of what’s currently possible using machine learning on embedded systems at
the moment, as well as some idea of what’s going to be feasible over the next few
years. We want you to be able to build and modify some practical examples using
time-series data like audio or input from accelerometers, and for low-power vision.
We’d like you to have enough understanding of the entire system to be able to at least
participate meaningfully in design discussions with specialists about new products
and hopefully be able to prototype early versions yourself.

Because we want to see complete products emerge, we approach everything we’re dis‐
cussing from a whole-system perspective. Often hardware vendors will focus on the
energy consumption of the particular component they’re selling, but not consider
how other necessary parts increase the power required. For example, if you have a
microcontroller that consumes only 1 mW, but the only camera sensor it works with
takes 10 mW to operate, any vision-based product you use it on will not be able to
take advantage of the processor’s low energy consumption. This does mean that we
won’t be doing many deep dives into the underlying workings of the different areas;
instead, we focus on what you need to know to use and modify the components
involved.
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For example, we won’t linger on the details of what is actually happening under the
hood when you train a model in TensorFlow, such as how gradients and back-
propagation work. Rather, we show you how to run training from scratch to create a
model, what common errors you might encounter and how to handle them, and how
to customize the process to build models to tackle your own problems with new
datasets.
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CHAPTER 3

Getting Up to Speed on Machine Learning

There are few areas in technology with the mystique that surrounds machine learning
and artificial intelligence (AI). Even if you’re an experienced engineer in another
domain, machine learning can seem like a dense subject with a mountain of assumed
knowledge requirements. Many developers feel discouraged when they begin to read
about ML and encounter explanations that invoke academic papers, obscure Python
libraries, and advanced mathematics. It can feel daunting to even know where to start.

In reality, machine learning can be simple to understand and is accessible to anyone
with a text editor. After you learn a few key ideas, you can easily use it in your own
projects. Beneath all the mystique is a handy set of tools for solving various types of
problems. It might sometimes feel like magic, but it’s all just code, and you don’t need
a PhD to work with it.

This book is about using machine learning with tiny devices. In the rest of this chap‐
ter, you’ll learn all the ML you need to get started. We’ll cover the basic concepts,
explore some tools, and train a simple machine learning model. Our focus is tiny
hardware, so we won’t spend long on the theory behind deep learning, or the mathe‐
matics that makes it all work. Later chapters will dig deeper into the tooling, and how
to optimize models for embedded devices. But by the end of this chapter, you’ll be
familiar with the key terminology, have an understanding of the general workflow,
and know where to go to learn more.

In this chapter, we cover the following:

• What machine learning actually is
• The types of problems it can solve
• Key terms and ideas
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• The workflow for solving problems with deep learning, one of the most popular
approaches to machine learning

There are many books and courses that explain the science behind
deep learning, so we won’t be doing that here. That said, it’s a fasci‐
nating topic and we encourage you to explore! We list some of our
favorite resources in “Learning Machine Learning” on page 364.
But remember, you don’t need all the theory to start building useful
things.

What Machine Learning Actually Is
Imagine you own a machine that manufactures widgets. Sometimes it breaks down,
and it’s expensive to repair. Perhaps if you collected data about the machine during
operation, you might be able to predict when it is about to break down and halt oper‐
ation before damage occurs. For instance, you could record its rate of production, its
temperature, and how much it is vibrating. It might be that some combination of
these factors indicates an impending problem. But how do you figure it out?

This is an example of the sort of problem machine learning is designed to solve. Fun‐
damentally, machine learning is a technique for using computers to predict things
based on past observations. We collect data about our factory machine’s performance
and then create a computer program that analyzes that data and uses it to predict
future states.

Creating a machine learning program is different from the usual process of writing
code. In a traditional piece of software, a programmer designs an algorithm that takes
an input, applies various rules, and returns an output. The algorithm’s internal opera‐
tions are planned out by the programmer and implemented explicitly through lines
of code. To predict breakdowns in a factory machine, the programmer would need to
understand which measurements in the data indicate a problem and write code that
deliberately checks for them.

This approach works fine for many problems. For example, we know that water boils
at 100°C at sea level, so it’s easy to write a program that can predict whether water is
boiling based on its current temperature and altitude. But in many cases, it can be
difficult to know the exact combination of factors that predicts a given state. To con‐
tinue with our factory machine example, there might be various different combina‐
tions of production rate, temperature, and vibration level that might indicate a
problem but are not immediately obvious from looking at the data.

To create a machine learning program, a programmer feeds data into a special kind of
algorithm and lets the algorithm discover the rules. This means that as programmers,
we can create programs that make predictions based on complex data without having
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to understand all of the complexity ourselves. The machine learning algorithm builds
a model of the system based on the data we provide, through a process we call train‐
ing. The model is a type of computer program. We run data through this model to
make predictions, in a process called inference.

There are many different approaches to machine learning. One of the most popular is 
deep learning, which is based on a simplified idea of how the human brain might
work. In deep learning, a network of simulated neurons (represented by arrays of
numbers) is trained to model the relationships between various inputs and outputs.
Different architectures, or arrangements of simulated neurons, are useful for different
tasks. For instance, some architectures excel at extracting meaning from image data,
while other architectures work best for predicting the next value in a sequence.

The examples in this book focus on deep learning, since it’s a flexible and powerful
tool for solving the types of problems that are well suited to microcontrollers. It
might be surprising to discover that deep learning can work even on devices with
limited memory and processing power. In fact, over the course of this book, you’ll
learn how to create deep learning models that do some really amazing things but that
still fit within the constraints of tiny devices.

The next section explains the basic workflow for creating and using a deep learning
model.

The Deep Learning Workflow
In the previous section, we outlined a scenario for using deep learning to predict
when a factory machine is likely to break down. In this section, we introduce the
work necessary to make this happen.

This process will involve the following tasks:

1. Decide on a goal
2. Collect a dataset
3. Design a model architecture
4. Train the model
5. Convert the model
6. Run inference
7. Evaluate and troubleshoot

Let’s walk through them, one by one.
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Decide on a Goal
When you’re designing any kind of algorithm, it’s important to start by establishing
exactly what you want it to do. It’s no different with machine learning. You need to
decide what you want to predict so you can decide what data to collect and which
model architecture to use.

In our example, we want to predict whether our factory machine is about to break
down. We can express this as a classification problem. Classification is a machine
learning task that takes a set of input data and returns the probability that this data
fits each of a set of known classes. In our example, we might have two classes: “nor‐
mal,” meaning that our machine is operating without issue, and “abnormal,” meaning
that our machine is showing signs that it might soon break down.

This means that our goal is to create a model that classifies our input data as either
“normal” or “abnormal.”

Collect a Dataset
Our factory is likely to have a lot of available data, ranging from the operating tem‐
perature of our machine through to the type of food that was served in the cafeteria
on a given day. Given the goal we’ve just established, we can begin to identify what
data we need.

Selecting data
Deep learning models can learn to ignore noisy or irrelevant data. That said, it’s best
to train your model only using information that is relevant to solving the problem.
Since it’s unlikely that today’s cafeteria food has an impact on the functioning of our
machine, we can probably exclude it from our dataset. Otherwise, the model will
need to learn to negate that irrelevant input, and it might be vulnerable to learning
spurious associations—perhaps our machine has, coincidentally, always broken down
on days that pizza is served.

You should always try to combine your domain expertise with experimentation when
deciding whether to include data. You can also use statistical techniques to try to
identify which data is significant. If you’re still unsure about including a certain data
source, you can always train two models and see which one works best!

Suppose that we’ve identified our most promising data as rate of production, tempera‐
ture, and vibration. Our next step is to collect some data so that we can train a model.
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It’s really important that the data you choose will also be available
when you want to make predictions. For example, since we have
decided to train our model with temperature readings, we will need
to provide temperature readings from the exact same physical loca‐
tions when we run inference. This is because the model learns to
understand how its inputs can predict its outputs. If we originally
trained the model on temperature data from the insides of our
machine, running the model on the current room temperature is
unlikely to work.

Collecting data
It’s difficult to know exactly how much data is required to train an effective model. It
depends on many factors, such as the complexity of the relationships between vari‐
ables, the amount of noise, and the ease with which classes can be distinguished.
However, there’s a rule of thumb that is always true: the more data, the better!

You should aim to collect data that represents the full range of conditions and events
that can occur in the system. If our machine can fail in several different ways, we
should be sure to capture data around each type of failure. If a variable changes natu‐
rally over time, it’s important to collect data that represents the full range. For exam‐
ple, if the machine’s temperature rises on warm days, you should be sure to include
data from both winter and summer. This diversity will help your model represent
every possible scenario, not just a select few.

The data we collect about our factory will likely be logged as a set of time series,
meaning a sequence of readings collected on a periodic basis. For example, we might
have a record of the temperature every minute, the rate of production each hour, and
the level of vibration on a second-by-second basis. After we collect the data, we’ll
need to transform these time series into a form appropriate for our model.

Labeling data
In addition to collecting data, we need to determine which data represents “normal”
and “abnormal” operation. We’ll provide this information during the training process
so that our model can learn how to classify inputs. The process of associating data
with classes is called labeling, and the “normal” and “abnormal” classes are our labels.

This type of training, in which you instruct the algorithm what the
data means during training, is called supervised learning. The
resulting classification model will be able to process incoming data
and predict to which class it is likely to belong.

To label the time-series data we’ve collected, we need a record of which periods of
time the machine was working and which periods of time it was broken. We might
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assume that the period immediately prior to the machine being broken generally rep‐
resents abnormal operation. However, since we can’t necessarily spot abnormal oper‐
ation from a superficial look at the data, getting this correct might require some
experimentation!

After we’ve decided how to label the data, we can generate a time series that contains
the labels and add this to our dataset.

Our final dataset
Table 3-1 lists the data sources that we’ve assembled at this point in the workflow.

Table 3-1. Data sources

Data source Interval Sample reading
Rate of production Once every 2 minutes 100 units

Temperature Once every minute 30°C

Vibration (% of typical) Once every 10 seconds 23%

Label (“normal” or “abnormal”) Once every 10 seconds normal

The table shows the interval of each data source. For example, the temperature is log‐
ged once per minute. We’ve also generated a time series that contains the labels for
the data. The interval for our labels is 1 per 10 seconds, which is the same as the
smallest interval for the other time series. This means that we can easily determine
the label for every datapoint in our data.

Now that we’ve collected our data, it’s time to use it to design and train a model.

Design a Model Architecture
There are many types of deep learning model architectures, designed to solve a wide
range of problems. When training a model, you can choose to design your own archi‐
tecture or base it on an existing architecture developed by researchers. For many
common problems, you can find pretrained models available online for free.

Over the course of this book we’ll introduce you to several different model architec‐
tures, but there are a huge number of possibilities beyond what is covered here.
Designing a model is both an art and a science, and model architecture is a major
area of research. New architectures are invented literally every day.

When deciding on an architecture, you need to think about the type of problem you
are trying to solve, the type of data you have access to, and the ways you can trans‐
form that data before feeding it into a model (we discuss transforming data shortly).
The fact is, because the most effective architecture varies depending on the type of
data that you are working with, your data and the architecture of your model are
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deeply intertwined. Although we introduce them here under separate headings,
they’ll always be considered together.

You also need to think about the constraints of the device you will be running the
model on, since microcontrollers generally have limited memory and slow process‐
ors, and larger models require more memory and take more time to run—the size of
a model depends on the number of neurons it contains, and the way those neurons
are connected. In addition, some devices are equipped with hardware acceleration
that can speed up the execution of certain types of model architectures, so you might
want to tailor your model to the strengths of the device you have in mind.

In our case, we might start by training a simple model with a few layers of neurons
and then refining the architecture in an iterative process until we get a useful result.
You’ll see how to do that later in this book.

Deep learning models accept input and generate output in the form of tensors. For
the purposes of this book,1 a tensor is essentially a list that can contain either numbers
or other tensors; you can think of it as similar to an array. Our hypothetical simple
model will take a tensor as its input. The following subsection describes how we
transform our data into this form.

Dimensions
The structure of a tensor is known as its shape, and they come in multiple dimensions.
We talk about tensors throughout this book, so here is some useful terminology:

Vector
A vector is a list of numbers, similar to an array. It’s the name we give a tensor
with a single dimension (a 1D tensor). The following is a vector of shape (5,)
because it contains five numbers in a single dimension:

  [42 35 8 643 7]

Matrix
A matrix is a 2D tensor, similar to a 2D array. The following matrix is of shape
(3, 3) because it contains three vectors of three numbers:

  [[1 2 3]
   [4 5 6]
   [7 8 9]]
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Higher-dimensional tensors
Any shape with more than two dimensions is just referred to as a tensor. Here’s a
3D tensor that has shape (2, 3, 3) because it contains two matrices of shape
(3, 3):

  [[[10 20 30]
    [40 50 60]
    [70 80 90]]
   [[11 21 31]
    [41 51 61]
    [71 81 91]]]

Scalar
A single number, known as a scalar, is technically a zero-dimensional tensor. For
example, the number 42 is a scalar.

Generating features from data
We’ve established that our model will accept some type of tensor as its input. But as
we discussed earlier, our data comes in the form of time series. How do we transform
that time-series data into a tensor that we can pass into the model?

Our task now is to decide how to generate features from our data. In machine learn‐
ing, the term feature refers to a particular type of information on which a model is
trained. Different types of models are trained on different types of features. For exam‐
ple, a model might accept a single scalar value as its sole input feature.

But inputs can be much more complex than this: a model designed to process images
might accept a multidimensional tensor of image data as its input, and a model
designed to predict based on multiple features might accept a vector containing mul‐
tiple scalar values, one for each feature.

Recall that we decided that our model should use rate of production, temperature,
and vibration to make its predictions. In their raw form, as time series with different
intervals, these will not be suitable to pass into the model. The following section
explains why.

Windowing.    In the following diagram, each piece of data in our time series is repre‐
sented by a star. The current label is included in the data, since the label is required
for training. Our goal is to train a model we can use to predict whether the machine is
operating normally or abnormally at any given moment based on the current condi‐
tions:

Production:    *                       *            (every 2 minutes)
Temperature:   *           *           *            (every minute)
Vibration:     * * * * * * * * * * * * * * * * *    (every 10 seconds)
Label:         * * * * * * * * * * * * * * * * *    (every 10 seconds)
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However, since our time series each have different intervals (like once per minute, or
once per 10 seconds), if we pass in only the data available at a given moment, it might
not include all of the types of data we have available. For example, in the moment
highlighted in the following image, only vibration is available. This would mean that
our model would only have information about vibration when attempting to make its
prediction:

                                              ┌─┐
Production:    *                       *      │ │
Temperature:   *           *           *      │ │
Vibration:     * * * * * * * * * * * * * * * *│*│
Label:         * * * * * * * * * * * * * * * *│*│
                                              └─┘

One solution to this problem might be to choose a window in time, and combine all
of the data in this window into a single set of values. For example, we might decide on
a one-minute window and look at all the values contained within it:

                                    ┌───────────┐
Production:    *                    │  *        │
Temperature:   *           *        │  *        │
Vibration:     * * * * * * * * * * *│* * * * * *│
Label:         * * * * * * * * * * *│* * * * * *│
                                    └───────────┘

If we average all the values in the window for each time series and take the most
recent value for any that lack a datapoint in the current window, we end up with a set
of single values. We can decide how to label this snapshot based on whether there are
any “abnormal” labels present in the window. If there’s any “abnormal” present at all,
the window should be labeled “abnormal.” If not, it should be labeled “normal”:

                                    ┌───────────┐
Production:    *                    │  *        │  Average: 102
Temperature:   *           *        │  *        │  Average: 34°C
Vibration:     * * * * * * * * * * *│* * * * * *│  Average: 18%
Label:         * * * * * * * * * * *│* * * * * *│  Label:   "normal"
                                    └───────────┘

The three non-label values are our features! We can pass them into our model as a
vector, with one element for each time series:

[102 34 .18]

During training, we can calculate a new window for every 10 seconds of data and pass
it into our model, using the label to inform the training algorithm of our desired out‐
put. During inference, whenever we want to use the model to predict abnormal
behavior, we can just look at our data, calculate the most recent window, run it
through the model, and receive a prediction.
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This is a simplistic approach, and it might not always turn out to work in practice,
but it’s a good enough starting point. You’ll quickly find that machine learning is all
about trial and error!

Before we move on to training, let’s go over one last thing about input values.

Normalization.    Generally, the data you feed into a neural network will be in the form
of tensors filled with floating-point values, or floats. A float is a data type used to rep‐
resent numbers that have decimal points. For the training algorithm to work effec‐
tively, these floating-point values need to be similar in size to one another. In fact, it’s
ideal if all values are expressed as numbers in the range of 0 to 1.

Let’s take another look at our input tensor from the previous section:

[102 34 .18]

These numbers are each at very different scales: the temperature is more than 100,
whereas the vibration is expressed as a fraction of 1. To pass these values into our net‐
work, we need to normalize them so that they are all in a similar range.

One way of doing this is to calculate the mean of each feature across the dataset and
subtract it from the values. This has the effect of squashing the numbers down so that
they are closer to zero. Here’s an example:

Temperature series:
[108 104 102 103 102]

Mean:
103.8

Normalized values, calculated by subtracting 103.8 from each temperature:
[ 4.2 0.2 -1.8 -0.8 -1.8 ]

One situation in which you’ll frequently encounter normalization, implemented in a
different way, is when images are fed into a neural network. Computers often store
images as matrices of 8-bit integers, whose values range from 0 to 255. To normalize
these values so that they are all between 0 and 1, each 8-bit value is multiplied by
1/255. Here’s an example with a 3 × 3–pixel grayscale image, in which each pixel’s
value represents its brightness:

Original 8-bit values:
[[255 175 30]
 [0   45  24]
 [130 192 87]]

Normalized values:
[[1.         0.68627451 0.11764706]
 [0.         0.17647059 0.09411765]
 [0.50980392 0.75294118 0.34117647]]
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Thinking with ML
So far, we’ve learned how to start thinking about solving problems with machine
learning. In the context of our factory scenario, we’ve walked through deciding on a
suitable goal, collecting and labeling the appropriate data, designing the features we
are going to pass into our model, and choosing a model architecture. No matter what
problem we are trying to solve, we’ll use the same approach. It’s important to note
that this is an iterative process, and we often go back and forth through the stages of
the ML workflow until we’ve arrived at a model that works—or decided that the task
is too difficult.

For example, imagine that we’re building a model to predict the weather. We’ll need to
decide on our goal (for instance, to predict whether it’s going to rain tomorrow), col‐
lect and label a dataset (such as weather reports from the past few years), design the
features that we’ll feed to our model (perhaps the average conditions over the past
two days), and choose a model architecture suitable for this type of data and the
device that we want to run it on. We’ll come up with some initial ideas, test them out,
and tweak our approach until we get good results.

The next step in our workflow is training, which we explore in the following section.

Train the Model
Training is the process by which a model learns to produce the correct output for a
given set of inputs. It involves feeding training data through a model and making
small adjustments to it until it makes the most accurate predictions possible.

As we discussed earlier, a model is a network of simulated neurons represented by
arrays of numbers arranged in layers. These numbers are known as weights and bia‐
ses, or collectively as the network’s parameters.

When data is fed into the network, it is transformed by successive mathematical oper‐
ations that involve the weights and biases in each layer. The output of the model is the
result of running the input through these operations. Figure 3-1 shows a simple net‐
work with two layers.
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Figure 3-1. A simple deep learning network with two layers

The model’s weights start out with random values, and biases typically start with a
value of 0. During training, batches of data are fed into the model, and the model’s
output is compared with the desired output (which in our case is the correct label,
“normal” or “abnormal”). An algorithm called backpropagation adjusts the weights
and biases incrementally so that over time, the output of the model gets closer to
matching the desired value. Training, which is measured in epochs (meaning itera‐
tions), continues until we decide to stop.

We generally stop training when a model’s performance stops improving. At the point
that it begins to make accurate predictions, it is said to have converged. To determine
whether a model has converged, we can analyze graphs of its performance during
training. Two common performance metrics are loss and accuracy. The loss metric
gives us a numerical estimate of how far the model is from producing the expected
answers, and the accuracy metric tells us the percentage of the time that it chooses the
correct prediction. A perfect model would have a loss of 0.0 and an accuracy of 100%,
but real models are rarely perfect.
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Figure 3-2 shows the loss and accuracy during training for a deep learning network.
You can see how as training progresses, accuracy increases and loss is reduced, until
we reach a point at which the model no longer improves.

Figure 3-2. A graph showing model convergence during training

To attempt to improve the model’s performance, we can change our model architec‐
ture, and we can adjust various values used to set up the model and moderate the
training process. These values are collectively known as hyperparameters, and they
include variables such as the number of training epochs to run and the number of
neurons in each layer. Each time we make a change, we can retrain the model, look at
the metrics, and decide whether to optimize further. Hopefully, time and iterations
will result in a model with acceptable accuracy!

It’s important to remember there’s no guarantee that you’ll be able
to achieve good enough accuracy for the problem you are trying to
solve. There isn’t always enough information contained within a
dataset to make accurate predictions, and some problems just can’t
be solved, even with state-of-the-art deep learning. That said, your
model may be useful even if it is not 100% accurate. In the case of
our factory example, being able to predict abnormal operation even
part of the time could be a big help.
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Underfitting and overfitting
The two most common reasons a model fails to converge are underfitting and overfit‐
ting.

A neural network learns to fit its behavior to the patterns it recognizes in data. If a
model is correctly fit, it will produce the correct output for a given set of inputs.
When a model is underfit, it has not yet been able to learn a strong enough represen‐
tation of these patterns to be able to make good predictions. This can happen for a
variety of reasons, most commonly that the architecture is too small to capture the
complexity of the system it is supposed to model or that it has not been trained on
enough data.

When a model is overfit, it has learned its training data too well. The model is able to
exactly predict the minutiae of its training data, but it is not able to generalize its
learning to data it has not previously seen. Often this happens because the model has
managed to entirely memorize the training data, or it has learned to rely on a short‐
cut present in the training data but not in the real world.

For example, imagine you are training a model to classify photos as containing either
dogs or cats. If all the dog photos in your training data are taken outdoors, and all the
cat photos are taken indoors, your model may learn to cheat and use the presence of
the sky in each photograph to predict which animal it is. This means that it might
misclassify future dog selfies if they happen to be taken indoors.

There are many ways to fight overfitting. One possibility is to reduce the size of the
model so it does not have enough capacity to learn an exact representation of its
training set. A set of techniques known as regularization can be applied during train‐
ing to reduce the degree of overfitting. To make the most of limited data, a technique
called data augmentation can be used to generate new, artificial datapoints by slicing
and dicing the existing data. But the best way to beat overfitting, when possible, is to
get your hands on a larger and more varied dataset. More data always helps!

Regularization and Data Augmentation
Regularization techniques are used to make deep learning models less likely to overfit
their training data. They generally involve constraining the model in some way in
order to prevent it from perfectly memorizing the data that it’s fed during training.

There are several methods used for regularization. Some, such as L1 and L2 regulari‐
zation, involve tweaking the algorithms used during training to penalize complex
models that are prone to overfitting. Another, named dropout, involves randomly cut‐
ting the connections between neurons during training. We’ll look at regularization in
practice later in the book.
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We’ll also explore data augmentation, which is a way to artificially expand the size of a
training dataset. This is done by creating multiple additional versions of every train‐
ing input, each transformed in a way that preserves its meaning but varies its exact
composition. In one of our examples, we train a model to recognize speech from
audio samples. We augment our original training data by adding artificial background
noise and shifting the samples around in time.

Training, validation, and testing
To assess the performance of a model, we can look at how it performs on its training
data. However, this only tells us part of the story. During training, a model learns to
fit its training data as closely as possible. As we saw earlier, in some cases the model
will begin to overfit the training data, meaning that it will work well on the training
data but not in real life.

To understand when this is happening, we need to validate the model using new data
that wasn’t used in training. It’s common to split a dataset into three parts—training,
validation, and test. A typical split is 60% training data, 20% validation, and 20% test.
This splitting must be done so that each part contains the same distribution of infor‐
mation, and in a way that preserves the structure of the data. For example, since our
data is a time series, we could potentially split it into three contiguous chunks of time.
If our data were not a time series, we could just sample the datapoints randomly.

During training, the training dataset is used to train the model. Periodically, data
from the validation dataset is fed through the model, and the loss is calculated.
Because the model has not seen this data before, its loss score is a more reliable meas‐
ure of how the model is performing. By comparing the training and validation loss
(and accuracy, or whichever other metrics are available) over time, you can see
whether the model is overfitting.

Figure 3-3 shows a model that is overfitting. You can see how as the training loss has
decreased, the validation loss has gone up. This means that the model is becoming
better at predicting the training data but is losing its ability to generalize to new data.
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Figure 3-3. A graph showing model overfitting during training

As we tweak our models and training processes to improve performance and avoid
overfitting, we will hopefully start to see our validation metrics improve.

However, this process has an unfortunate side effect. By optimizing to improve the
validation metrics, we might just be nudging the model toward overfitting both the
training and the validation data! Each adjustment we make will fit the model to the
validation data slightly better, and in the end, we might have the same overfitting
problem as before.

To verify that this hasn’t happened, our final step when training a model is to run it
on our test data and confirm that it performs as well as during validation. If it doesn’t,
we have optimized our model to overfit both our training and validation data. In this
case, we might need to go back to the drawing board and come up with a new model
architecture, since if we continue to tweak to improve performance on our test data,
we’ll just overfit to that, too.

After we have a model that performs acceptably well with training, validation, and
test data, the training part of this process is over. Next, we get our model ready to run
on-device!
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Convert the Model
Throughout this book, we use TensorFlow to build and train models. A TensorFlow
model is essentially a set of instructions that tell an interpreter how to transform data
in order to produce an output. When we want to use our model, we just load it into
memory and execute it using the TensorFlow interpreter.

However, TensorFlow’s interpreter is designed to run models on powerful desktop
computers and servers. Since we’ll be running our models on tiny microcontrollers,
we need a different interpreter that’s designed for our use case. Fortunately, Tensor‐
Flow provides an interpreter and accompanying tools to run models on small, low-
powered devices. This set of tools is called TensorFlow Lite.

Before TensorFlow Lite can run a model, it first must be converted into the Tensor‐
Flow Lite format and then saved to disk as a file. We do this using a tool named the
TensorFlow Lite Converter. The converter can also apply special optimizations aimed
at reducing the size of the model and helping it run faster, often without sacrificing
performance.

In Chapter 13, we dive into the details of TensorFlow Lite and how it helps us run
models on tiny devices. For now, all you need to know is that you’ll need to convert
your models, and that the conversion process is quick and easy.

Run Inference
After the model has been converted, it’s ready to deploy! We’ll now use the Tensor‐
Flow Lite for Microcontrollers C++ library to load the model and make predictions.

Since this is the part where our model meets our application code, we need to write
some code that takes raw input data from our sensors and transforms it into the same
form that our model was trained on. We then pass this transformed data into our
model and run inference.

This will result in output data containing predictions. In the case of our classifier
model, the output will be a score for each of our classes, “normal” and “abnormal.”
For models that classify data, typically the scores for all of the classes will sum to 1,
and the class with the highest score will be the prediction. The higher the difference
between the scores, the higher the confidence in the prediction. Table 3-2 lists some
example outputs.

Table 3-2. Example outputs

Normal score Abnormal score Explanation
0.1 0.9 High confidence in an abnormal state

0.9 0.1 High confidence in a normal state

0.7 0.3 Slight confidence in a normal state
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Normal score Abnormal score Explanation
0.49 0.51 Inconclusive result, since neither state is significantly ahead

In our factory machine example, each individual inference takes into account only a
snapshot of the data—it tells us the probability of an abnormal state within the last 10
seconds, based on various sensor readings. Since real-world data is often messy and
machine learning models aren’t perfect, it’s possible that a temporary glitch might
result in an incorrect classification. For example, we might see a spike in a tempera‐
ture value due to a temporary sensor malfunction. This transient, unreliable input
might result in an output classification that momentarily doesn’t reflect reality.

To prevent these momentary glitches from causing problems, we could potentially
take the average of all of our model’s outputs across a period of time. For example, we
could run our model on the current data window every 10 seconds, and take the aver‐
ages of the last 6 outputs to give a smoothed score for each class. This would mean
that transient issues are ignored, and we only act upon consistent behavior. We use
this technique to help with wake-word detection in Chapter 7.

After we have a score for each class, it’s up to our application code to decide what to
do. Perhaps if an abnormal state is detected consistently for one minute, our code will
send a signal to shut down our machine and alert the maintenance team.

Evaluate and Troubleshoot
After we’ve deployed our model and have it running on-device, we’ll start to see
whether its real-world performance approaches what we hoped. Even though we’ve
already proved that our model makes accurate predictions on its test data, perfor‐
mance on the actual problem might be different.

There are many reasons why this might happen. For example, the data used in train‐
ing might not be exactly representative of the data available in real operation. Perhaps
due to local climate, our machine’s temperature is generally cooler than the one from
which our dataset was collected. This might affect the predictions made by our
model, such that they are no longer as accurate as expected.

Another possibility is that our model might have overfit our dataset without us realiz‐
ing. In “Train the Model” on page 21, we learned how this can happen by accident
when the dataset happens to contain additional signals that a model can learn to rec‐
ognize in place of those we expect.

If our model isn’t working in production, we’ll need to do some troubleshooting.
First, we rule out any hardware problems (like faulty sensors or unexpected noise)
that might be affecting the data that gets to our model. Second, we capture some data
from the device where the model is deployed and compare it with our original dataset
to make sure that it is in the same ballpark. If not, perhaps there’s a difference in envi‐
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ronmental conditions or sensor characteristics that we weren’t expecting. If the data
checks out, it might be that overfitting is the problem.

After we’ve ruled out hardware issues, the best fix for overfitting is often to train with
more data. We can capture additional data from our deployed hardware, combine it
with our original dataset, and retrain our model. In the process, we can apply regula‐
rization and data augmentation techniques to help make the most of the data we
have.

Reaching good real-world performance can sometimes take some iteration on your
model, your hardware, and the accompanying software. If you run into a problem,
treat it like any other technology issue. Take a scientific approach to troubleshooting,
eliminating possible factors, and analyze your data to figure out what is going wrong.

Wrapping Up
Now that you’re familiar with the basic workflow used by machine learning practi‐
tioners, we’re ready to take the next steps in our TinyML adventure.

In Chapter 4, we’ll build our first model and deploy it to some tiny hardware!
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CHAPTER 4

The “Hello World” of TinyML:
Building and Training a Model

In Chapter 3, we learned the basic concepts of machine learning and the general
workflow that machine learning projects follow. In this chapter and the next, we’ll
start putting our knowledge into practice. We’re going to build and train a model
from scratch and then integrate it into a simple microcontroller program.

In the process, you’ll get your hands dirty with some powerful developer tools that
are used every day by cutting-edge machine learning practitioners. You’ll also learn
how to integrate a machine learning model into a C++ program and deploy it to a
microcontroller to control current flowing in a circuit. This might be your first taste
of mixing hardware and ML, and it should be fun!

You can test the code that we write in these chapters on your Mac, Linux, or Win‐
dows machine, but for the full experience, you’ll need one of the embedded devices
mentioned in “What Hardware Do You Need?” on page 6:

• Arduino Nano 33 BLE Sense
• SparkFun Edge
• ST Microelectronics STM32F746G Discovery kit

To create our machine learning model, we’ll use Python, TensorFlow, and Google’s
Colaboratory, which is a cloud-based interactive notebook for experimenting with
Python code. These are some of the most important tools for real-world machine
learning engineers, and they’re all free to use.
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Wondering about the title of this chapter? It’s a tradition in pro‐
gramming that new technologies are introduced with example code
that demonstrates how to do something very simple. Often, the
simple task is to make a program output the words, “Hello, world.”
There’s no clear equivalent in ML, but we’re using the term “hello
world” to refer to a simple, easy-to-read example of an end-to-end
TinyML application. To learn the history of “hello world,” read the
Wikipedia article.

Over the course of this chapter, we will do the following:

1. Obtain a simple dataset.
2. Train a deep learning model.
3. Evaluate the model’s performance.
4. Convert the model to run on-device.
5. Write code to perform on-device inference.
6. Build the code into a binary.
7. Deploy the binary to a microcontroller.

All the code that we will use is available in TensorFlow’s GitHub repository.

We recommend that you walk through each part of this chapter and then try running
the code. There are instructions on how to do this along the way.

But before we start, let’s discuss exactly what we’re going to build.

What We’re Building
In the previous chapter, we discussed how deep learning networks learn to model
patterns in their training data so that they can make predictions. We’re now going to
train a network to model some very simple data.

You’ve probably heard of the sine function. It’s used in trigonometry to help describe
the properties of right-angled triangles. The data we’ll be training with is a sine wave,
which is the graph obtained by plotting the result of the sine function over time. You
can see the graph of a sine wave in Figure 4-1.
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Figure 4-1. A sine wave

Our goal is to train a model that can take a value, x, and predict its sine, y. In a real-
world application, if you needed the sine of x, you could just calculate it directly.
However, by training a model to approximate the result, we can demonstrate the
basics of machine learning.

The second part of our project will be to run this model on a hardware device. Visu‐
ally, the sine wave is a pleasant curve that runs smoothly from –1 to 1 and back. This
makes it perfect for controlling a visually pleasing light show! We’ll be using the out‐
put of our model to control the timing of either some flashing LEDs or a graphical
animation, depending on the capabilities of the device.

Online, you can see an animated GIF of this code flashing the LEDs of a SparkFun
Edge. Figure 4-2 is a still from this animation, showing a couple of the device’s LEDs
lit.
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Figure 4-2. The code running on a SparkFun Edge

This may not be a particularly useful application of machine learning, but in the spirit
of a “hello world” example, it’s simple, fun, and will help demonstrate the basic prin‐
ciples you need to know.

After we get our basic code working, we’ll be deploying it to three different devices:
the SparkFun Edge, an Arduino Nano 33 BLE Sense, and an ST Microelectronics
STM32F746G Discovery kit.

Since TensorFlow is an actively developed open source project that
is continually evolving, you might notice some slight differences
between the code printed here and the code hosted online. Don’t
worry—even if a few lines of code change, the basic principles
remain the same.

Our Machine Learning Toolchain
To build the machine learning parts of this project, we’re using the same tools used by
real-world machine learning practitioners. This section introduces them to you.
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Python and Jupyter Notebooks
Python is the favorite programming language of machine learning scientists and
engineers. It’s easy to learn, works well for many different applications, and has a ton
of libraries for useful tasks involving data and mathematics. The vast majority of deep
learning research is done using Python, and researchers often release the Python
source code for the models they create.

Python is especially great when combined with something called Jupyter Notebooks.
This is a special document format that allows you to mix writing, graphics, and code
that can be run at the click of a button. Jupyter notebooks are widely used as a way to
describe, explain, and explore machine learning code and problems.

We’ll be creating our model inside of a Jupyter notebook, which permits us to do awe‐
some things to visualize our data during development. This includes displaying
graphs that show our model’s accuracy and convergence.

If you have some programming experience, Python is easy to read and learn. You
should be able to follow this tutorial without any trouble.

Google Colaboratory
To run our notebook we’ll use a tool called Colaboratory, or Colab for short. Colab is
made by Google, and it provides an online environment for running Jupyter note‐
books. It’s provided for free as a tool to encourage research and development in
machine learning.

Traditionally, you needed to create a notebook on your own computer. This required
installing a lot of dependencies, such as Python libraries, which can be a headache. It
was also difficult to share the resulting notebook with other people, since they might
have different versions of the dependencies, meaning the notebook might not run as
expected. In addition, machine learning can be computationally intensive, so training
models might be slow on your development computer.

Colab allows you to run notebooks on Google’s powerful hardware, at zero cost. You
can edit and view your notebooks from any web browser, and you can share them
with other people, who are guaranteed to get the same results when they run them.
You can even configure Colab to run your code on specially accelerated hardware that
can perform training more quickly than a normal computer.

TensorFlow and Keras
TensorFlow is a set of tools for building, training, evaluating, and deploying machine
learning models. Originally developed at Google, TensorFlow is now an open source
project built and maintained by thousands of contributors across the world. It is the
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most popular and widely used framework for machine learning. Most developers
interact with TensorFlow via its Python library.

TensorFlow does many different things. In this chapter we’ll use Keras, TensorFlow’s
high-level API that makes it easy to build and train deep learning networks. We’ll also
use TensorFlow Lite, a set of tools for deploying TensorFlow models to mobile and
embedded devices, to run our model on-device.

Chapter 13 will cover TensorFlow in much more detail. For now, just know that it is
an extremely powerful and industry-standard tool that will continue to serve your
needs as you go from beginner to deep learning expert.

Building Our Model
We’re now going to walk through the process of building, training, and converting
our model. We include all of the code in this chapter, but you can also follow along in
Colab and run the code as you go.

First, load the notebook. After the page loads, at the top, click the “Run in Google
Colab” button, as shown in Figure 4-3. This copies the notebook from GitHub into
Colab, allowing you to run it and make edits.

Figure 4-3. The “Run in Google Colab” button

Problems Loading the Notebook
As of this writing, there’s a known issue with GitHub that results in intermittent error
messages when displaying Jupyter notebooks. If you see the message “Sorry, some‐
thing went wrong. Reload?” when trying to access the notebook, you can open it
directly in Colab by using the following process. Copy the part of the notebook’s Git‐
Hub URL that appears after https://github.com/:

tensorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/
  hello_world/create_sine_model.ipynb

And prepend it with https://colab.research.google.com/github/. This will result in a full
URL:

https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/
  tensorflow/lite/micro/examples/hello_world/create_sine_model.ipynb
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Navigate to that URL in your browser to open the notebook directly in Colab.

By default, in addition to the code, the notebook contains a sample of the output you
should expect to see when the code is run. Since we’ll be running through the code in
this chapter, let’s clear this output so the notebook is in a pristine state. To do this, in
Colab’s menu, click Edit and then select “Clear all outputs,” as shown in Figure 4-4.

Figure 4-4. The “Clear all outputs” option

Nice work. Our notebook is now ready to go!
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If you’re already familiar with machine learning, TensorFlow, and
Keras, you might want to skip ahead to the part where we convert
our model to use with TensorFlow Lite. In the book, jump to “Con‐
verting the Model for TensorFlow Lite” on page 65. In Colab, scroll
down to the heading “Convert to TensorFlow Lite.”

Importing Dependencies
Our first task is to import the dependencies we need. In Jupyter notebooks, code and
text are arranged in cells. There are code cells, which contain executable Python code,
and text cells, which contain formatted text.

Our first code cell is located under “Import dependencies.” It sets up all of the libra‐
ries that we need to train and convert our model. Here’s the code:

# TensorFlow is an open source machine learning library
!pip install tensorflow==2.0
import tensorflow as tf
# NumPy is a math library
import numpy as np
# Matplotlib is a graphing library
import matplotlib.pyplot as plt
# math is Python's math library
import math

In Python, the import statement loads a library so that it can be used from our code.
You can see from the code and comments that this cell does the following:

• Installs the TensorFlow 2.0 library using pip, a package manager for Python
• Imports TensorFlow, NumPy, Matplotlib, and Python’s math library

When we import a library, we can give it an alias so that it’s easy to refer to later. For
example, in the preceding code, we use import numpy as np to import NumPy and
give it the alias np. When we use it in our code, we can refer to it as np.

The code in code cells can be run by clicking the button that appears at the upper left
when the cell is selected. In the “Import dependencies” section, click anywhere in the
first code cell so that it becomes selected. Figure 4-5 shows what a selected cell looks
like.
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Figure 4-5. The “Import dependencies” cell in its selected state

To run the code, click the button that appears in the upper left. As the code is being
run, the button will animate with a circle as depicted in Figure 4-6.

Figure 4-6. The “Import dependencies” cell in its running state

The dependencies will begin to be installed, and you’ll see some output appearing.
You should eventually see the following line, meaning that the library was installed
successfully:

Successfully installed tensorboard-2.0.0 tensorflow-2.0.0 tensorflow-
estimator-2.0.0
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After a cell has been run in Colab, you’ll see that a 1 is now displayed in the upper-left
corner when it is no longer selected, as illustrated in Figure 4-7. This number is a
counter that is incremented each time the cell is run.

Figure 4-7. The cell run counter in the upper-left corner

You can use this to understand which cells have been run, and how many times.

Generating Data
Deep learning networks learn to model patterns in underlying data. As we mentioned
earlier, we’re going to train a network to model data generated by a sine function.
This will result in a model that can take a value, x, and predict its sine, y.

Before we go any further, we need some data. In a real-world situation, we might be
collecting data from sensors and production logs. For this example, however, we’re
using some simple code to generate a dataset.

The next cell is where this will happen. Our plan is to generate 1,000 values that rep‐
resent random points along a sine wave. Let’s take a look at Figure 4-8 to remind our‐
selves what a sine wave looks like.
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Figure 4-8. A sine wave

Each full cycle of a wave is called its period. From the graph, we can see that a full
cycle is completed approximately every six units on the x-axis. In fact, the period of a
sine wave is 2 × π, or 2π.

So that we have a full sine wave worth of data to train on, our code will generate ran‐
dom x values from 0 to 2π. It will then calculate the sine for each of these values.

Here’s the full code for this cell, which uses NumPy (np, which we imported earlier) to
generate random numbers and calculate their sine:

# We'll generate this many sample datapoints
SAMPLES = 1000

# Set a "seed" value, so we get the same random numbers each time we run this
# notebook. Any number can be used here.
SEED = 1337
np.random.seed(SEED)
tf.random.set_seed(SEED)

# Generate a uniformly distributed set of random numbers in the range from
# 0 to 2π, which covers a complete sine wave oscillation
x_values = np.random.uniform(low=0, high=2*math.pi, size=SAMPLES)

# Shuffle the values to guarantee they're not in order
np.random.shuffle(x_values)
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# Calculate the corresponding sine values
y_values = np.sin(x_values)

# Plot our data. The 'b.' argument tells the library to print blue dots.
plt.plot(x_values, y_values, 'b.')
plt.show()

In addition to what we discussed earlier, there are a few things worth pointing out in
this code. First, you’ll see that we use np.random.uniform() to generate our x values.
This method returns an array of random numbers in the specified range. NumPy
contains a lot of useful methods that operate on entire arrays of values, which is very
convenient when dealing with data.

Second, after generating the data, we shuffle it. This is important because the training
process used in deep learning depends on data being fed to it in a truly random order.
If the data were in order, the resulting model would be less accurate.

Next, notice that we use NumPy’s sin() method to calculate our sine values. NumPy
can do this for all of our x values at once, returning an array. NumPy is great!

Finally, you’ll see some mysterious code invoking plt, which is our alias for
Matplotlib:

# Plot our data. The 'b.' argument tells the library to print blue dots.
plt.plot(x_values, y_values, 'b.')
plt.show()

What does this code do? It plots a graph of our data. One of the best things about
Jupyter notebooks is their ability to display graphics that are output by the code you
run. Matplotlib is an excellent tool for creating graphs from data. Since visualizing
data is a crucial part of the machine learning workflow, this will be incredibly helpful
as we train our model.

To generate the data and render it as a graph, run the code in the cell. After the code
cell finishes running, you should see a beautiful graph appear underneath, like the
one shown in Figure 4-9.
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Figure 4-9. A graph of our generated data

This is our data! It is a selection of random points along a nice, smooth sine curve.
We could use this to train our model.

However, this would be too easy. One of the exciting things about deep learning net‐
works is their ability to sift patterns from noise. This allows them to make predictions
even when trained on messy, real-world data. To show this off, let’s add some random
noise to our datapoints and draw another graph:

# Add a small random number to each y value
y_values += 0.1 * np.random.randn(*y_values.shape)

# Plot our data
plt.plot(x_values, y_values, 'b.')
plt.show()

Run this cell and take a look at the results, as shown in Figure 4-10.
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Figure 4-10. A graph of our data with noise added

Much better! Our points are now randomized, so they represent a distribution
around a sine wave instead of a smooth, perfect curve. This is much more reflective
of a real-world situation, in which data is generally quite messy. 

Splitting the Data
From the previous chapter, you might remember that a dataset is often split into three
parts: training, validation, and test. To evaluate the accuracy of the model we train, we
need to compare its predictions to real data and check how well they match up.

This evaluation happens during training (where it is referred to as validation) and
after training (referred to as testing). It’s important in each case that we use fresh data
that was not already used to train the model.

To ensure that we have data to use for evaluation, we’ll set some aside before we begin
training. Let’s reserve 20% of our data for validation, and another 20% for testing.
We’ll use the remaining 60% to train the model. This is a typical split used when
training models.

The following code splits our data and then plots each set as a different color:

# We'll use 60% of our data for training and 20% for testing. The remaining 20%
# will be used for validation. Calculate the indices of each section.
TRAIN_SPLIT =  int(0.6 * SAMPLES)
TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT)
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# Use np.split to chop our data into three parts.
# The second argument to np.split is an array of indices where the data will be
# split. We provide two indices, so the data will be divided into three chunks.
x_train, x_validate, x_test = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT])
y_train, y_validate, y_test = np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT])

# Double check that our splits add up correctly
assert (x_train.size + x_validate.size + x_test.size) ==  SAMPLES

# Plot the data in each partition in different colors:
plt.plot(x_train, y_train, 'b.', label="Train")
plt.plot(x_validate, y_validate, 'y.', label="Validate")
plt.plot(x_test, y_test, 'r.', label="Test")
plt.legend()
plt.show()

To split our data, we use another handy NumPy method: split(). This method takes
an array of data and an array of indices and then chops the data into parts at the indi‐
ces provided.

Run this cell to see the results of our split. Each type of data will be represented by a
different color (or shade, if you’re reading the print version of this book), as demon‐
strated in Figure 4-11.

Figure 4-11. A graph of our data split into training, validation, and test sets
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Defining a Basic Model
Now that we have our data, it’s time to create the model that we’ll train to fit it.

We’re going to build a model that will take an input value (in this case, x) and use it to
predict a numeric output value (the sine of x). This type of problem is called a
regression. We can use regression models for all sorts of tasks that require a numeric
output. For example, a regression model could attempt to predict a person’s running
speed in miles per hour based on data from an accelerometer.

To create our model, we’re going to design a simple neural network. It uses layers of
neurons to attempt to learn any patterns underlying the training data so that it can
make predictions.

The code to do this is actually quite straightforward. It uses Keras, TensorFlow’s high-
level API for creating deep learning networks:

# We'll use Keras to create a simple model architecture
from tf.keras import layers
model_1 = tf.keras.Sequential()

# First layer takes a scalar input and feeds it through 16 "neurons." The
# neurons decide whether to activate based on the 'relu' activation function.
model_1.add(layers.Dense(16, activation='relu', input_shape=(1,)))

# Final layer is a single neuron, since we want to output a single value
model_1.add(layers.Dense(1))

# Compile the model using a standard optimizer and loss function for regression
model_1.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

# Print a summary of the model's architecture
model_1.summary()

First, we create a Sequential model using Keras, which just means a model in which
each layer of neurons is stacked on top of the next, as we saw in Figure 3-1. We then
define two layers. Here’s where the first layer is defined:

model_1.add(layers.Dense(16, activation='relu', input_shape=(1,)))

The first layer has a single input—our x value—and 16 neurons. It’s a Dense layer
(also known as a fully connected layer), meaning the input will be fed into every single
one of its neurons during inference, when we’re making predictions. Each neuron will
then become activated to a certain degree. The amount of activation for each neuron
is based on both its weight and bias values, learned during training, and its activation
function. The neuron’s activation is output as a number.

Activation is calculated by a simple formula, shown in Python. We won’t ever need to
code this ourselves, since it is handled by Keras and TensorFlow, but it will be helpful
to know as we go further into deep learning:
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activation = activation_function((input * weight) + bias)

To calculate the neuron’s activation, its input is multiplied by the weight, and the bias
is added to the result. The calculated value is passed into the activation function. The
resulting number is the neuron’s activation.

The activation function is a mathematical function used to shape the output of the
neuron. In our network, we’re using an activation function called rectified linear unit,
or ReLU for short. This is specified in Keras by the argument activation=relu.

ReLU is a simple function, shown here in Python:

def relu(input):
    return max(0.0, input)

ReLU returns whichever is the larger value: its input, or zero. If its input value is neg‐
ative, ReLU returns zero. If its input value is above zero, ReLU returns it unchanged.

Figure 4-12 shows the output of ReLU for a range of input values.

Figure 4-12. A graph of ReLU for inputs from –10 to 10

Without an activation function, the neuron’s output would always be a linear function
of its input. This would mean that the network could model only linear relationships
in which the ratio between x and y remains the same across the entire range of values.
This would prevent a network from modeling our sine wave, because a sine wave is
nonlinear.
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Since ReLU is nonlinear, it allows multiple layers of neurons to join forces and model
complex nonlinear relationships, in which the y value doesn’t increase by the same
amount for every increment of x.

There are other activation functions, but ReLU is the most com‐
monly used. You can see some of the other options in the Wikipe‐
dia article on activation functions. Each activation function has
different trade-offs, and machine learning engineers experiment to
find which options work best for a given architecture.

The activation numbers from our first layer will be fed as inputs to our second layer,
which is defined in the following line:

model_1.add(layers.Dense(1))

Because this layer is a single neuron, it will receive 16 inputs, one for each of the neu‐
rons in the previous layer. Its purpose is to combine all of the activations from the
previous layer into a single output value. Since this is our output layer, we don’t spec‐
ify an activation function—we just want the raw result.

Because this neuron has multiple inputs, it has a corresponding weight value for each.
The neuron’s output is calculated by the following formula, shown in Python:

# Here, `inputs` and `weights` are both NumPy arrays with 16 elements each
output = sum((inputs * weights)) + bias

The output value is obtained by multiplying each input with its corresponding
weight, summing the results, and then adding the neuron’s bias.

The network’s weights and biases are learned during training. The compile() step in
the code shown earlier in the chapter configures some important arguments used in
the training process, and prepares the model to be trained:

model_1.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

The optimizer argument specifies the algorithm that will adjust the network to
model its input during training. There are several choices, and finding the best one
often comes down to experimentation. You can read about the options in the Keras
documentation.

The loss argument specifies the method used during training to calculate how far the
network’s predictions are from reality. This method is called a loss function. Here,
we’re using mse, or mean squared error. This loss function is used in the case of
regression problems, for which we’re trying to predict a number. There are various
loss functions available in Keras. You can see some of the options listed in the Keras
docs.
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The metrics argument allows us to specify some additional functions that are used to
judge the performance of our model. We specify mae, or mean absolute error, which is
a helpful function for measuring the performance of a regression model. This metric
will be measured during training, and we’ll have access to the results after training is
done.

After we compile our model, we can use the following line to print some summary
information about its architecture:

# Print a summary of the model's architecture
model_1.summary()

Run the cell in Colab to define the model. You’ll see the following output printed:

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
dense (Dense)                (None, 16)                32
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 17
=================================================================
Total params: 49
Trainable params: 49
Non-trainable params: 0
_________________________________________________________________

This table shows the layers of the network, their output shapes, and their numbers of
parameters. The size of a network—how much memory it takes up—depends mostly
on its number of parameters, meaning its total number of weights and biases. This
can be a useful metric when discussing model size and complexity.

For simple models like ours, the number of weights can be determined by calculating
the number of connections between neurons in the model, given that each connec‐
tion has a weight.

The network we’ve just designed consists of two layers. Our first layer has 16 connec‐
tions—one between its input and each of its neurons. Our second layer has a single
neuron, which also has 16 connections—one to each neuron in the first layer. This
makes the total number of connections 32.

Since every neuron has a bias, the network has 17 biases, meaning it has a total of 32
+ 17 = 49 parameters.

We’ve now walked through the code that defines our model. Next, we’ll begin the
training process.

Building Our Model | 49



Training Our Model
After we define our model, it’s time to train it and then evaluate its performance to
see how well it works. When we see the metrics, we can decide if it’s good enough, or
if we should make changes to our design and train it again.

To train a model in Keras we just call its fit() method, passing all of our data and
some other important arguments. The code in the next cell shows how:

history_1 = model_1.fit(x_train, y_train, epochs=1000, batch_size=16,
                     validation_data=(x_validate, y_validate))

Run the code in the cell to begin training. You’ll see some logs start to appear:

Train on 600 samples, validate on 200 samples
Epoch 1/1000
600/600 [==============================] - 1s 1ms/sample - loss: 0.7887 - mae: 
0.7848 - val_loss: 0.5824 - val_mae: 0.6867
Epoch 2/1000
600/600 [==============================] - 0s 155us/sample - loss: 0.4883 - 
mae: 0.6194 - val_loss: 0.4742 - val_mae: 0.6056

Our model is now training. This will take a little while, so while we wait let’s walk
through the details of our call to fit():

history_1 = model_1.fit(x_train, y_train, epochs=1000, batch_size=16,
                     validation_data=(x_validate, y_validate))

First, you’ll notice that we assign the return value of our fit() call to a variable
named history_1. This variable contains a ton of information about our training
run, and we’ll use it later to investigate how things went.

Next, let’s take a look at the fit() function’s arguments:

x_train, y_train
The first two arguments to fit() are the x and y values of our training data.
Remember that parts of our data are kept aside for validation and testing, so only
the training set is used to train the network.

epochs

The next argument specifies how many times our entire training set will be run
through the network during training. The more epochs, the more training will
occur. You might think that the more training happens, the better the network
will be. However, some networks will start to overfit their training data after a
certain number of epochs, so we might want to limit the amount of training we
do.

In addition, even if there’s no overfitting, a network will stop improving after a
certain amount of training. Since training costs time and computational resour‐
ces, it’s best not to train if the network isn’t getting better!
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We’re starting out with 1,000 epochs of training. When training is complete, we
can dig into our metrics to discover whether this is the correct number.

batch_size

The batch_size argument specifies how many pieces of training data to feed into
the network before measuring its accuracy and updating its weights and biases. If
we wanted, we could specify a batch_size of 1, meaning we’d run inference on a
single datapoint, measure the loss of the network’s prediction, update the weights
and biases to make the prediction more accurate next time, and then continue
this cycle for the rest of the data.

Because we have 600 datapoints, each epoch would result in 600 updates to the
network. This is a lot of computation, so our training would take ages! An alter‐
native might be to select and run inference on multiple datapoints, measure the
loss in aggregate, and then updating the network accordingly.

If we set batch_size to 600, each batch would include all of our training data.
We’d now have to make only one update to the network every epoch—much
quicker. The problem is, this results in less accurate models. Research has shown
that models trained with large batch sizes have less ability to generalize to new
data—they are more likely to overfit.

The compromise is to use a batch size that is somewhere in the middle. In our
training code, we use a batch size of 16. This means that we’ll choose 16 data‐
points at random, run inference on them, calculate the loss in aggregate, and
update the network once per batch. If we have 600 points of training data, the
network will be updated around 38 times per epoch, which is far better than 600.

When choosing a batch size, we’re making a compromise between training effi‐
ciency and model accuracy. The ideal batch size will vary from model to model.
It’s a good idea to start with a batch size of 16 or 32 and experiment to see what
works best.

validation_data

This is where we specify our validation dataset. Data from this dataset will be run
through the network throughout the training process, and the network’s predic‐
tions will be compared with the expected values. We’ll see the results of validation
in the logs and as part of the history_1 object.

Training Metrics
Hopefully, by now, training has finished. If not, wait a few moments for it to
complete.
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We’re now going to check various metrics to see how well our network has learned.
To begin, let’s look at the logs written during training. This will show how the net‐
work has improved during training from its random initial state.

Here are the logs for our first and last epochs:

Epoch 1/1000
600/600 [==============================] - 1s 1ms/sample - loss: 0.7887 - mae: 
0.7848 - val_loss: 0.5824 - val_mae: 0.6867

Epoch 1000/1000
600/600 [==============================] - 0s 124us/sample - loss: 0.1524 - 
mae: 0.3039 - val_loss: 0.1737 - val_mae: 0.3249

The loss, mae, val_loss, and val_mae tell us various things:

loss

This is the output of our loss function. We’re using mean squared error, which is
expressed as a positive number. Generally, the smaller the loss value, the better, so
this is a good thing to watch as we evaluate our network.

Comparing the first and last epochs, the network has clearly improved during
training, going from a loss of ~0.7 to a smaller value of ~0.15. Let’s look at the
other numbers to see whether this improvement is enough!

mae

This is the mean absolute error of our training data. It shows the average differ‐
ence between the network’s predictions and the expected y values from the train‐
ing data.

We can expect our initial error to be pretty dismal, given that it’s based on an
untrained network. This is certainly the case: the network’s predictions are off by
an average of ~0.78, which is a large number when the range of acceptable values
is only from –1 to 1!

However, even after training, our mean absolute error is ~0.30. This means that
our predictions are off by an average of ~0.30, which is still quite awful.

val_loss

This is the output of our loss function on our validation data. In our final epoch,
the training loss (~0.15) is slightly lower than the validation loss (~0.17). This is a
hint that our network might be overfitting, because it is performing worse on
data it has not seen before.

val_mae

This is the mean absolute error for our validation data. With a value of ~0.32, it’s
worse than the mean absolute error on our training set, which is another sign
that the network might be overfitting.
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Graphing the History
So far, it’s clear that our model is not doing a great job of making accurate predic‐
tions. Our task now is to figure out why. To do so, let’s make use of the data collected
in our history_1 object.

The next cell extracts the training and validation loss data from the history object and
plots it on a chart:

loss = history_1.history['loss']
val_loss = history_1.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'g.', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

The history_1 object contains an attribute called, history_1.history, which is a
dictionary recording metric values during training and validation. We use this to col‐
lect the data we’re going to plot. For our x-axis we use the epoch number, which we
determine by looking at the number of loss datapoints. Run the cell and you’ll see the
graph in Figure 4-13.
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Figure 4-13. A graph of training and validation loss

As you can see, the amount of loss rapidly decreases over the first 50 epochs, before
flattening out. This means that the model is improving and producing more accurate
predictions.

Our goal is to stop training when either the model is no longer improving or the
training loss is less than the validation loss, which would mean that the model has
learned to predict the training data so well that it can no longer generalize to new
data.

The loss drops precipitously in the first few epochs, which makes the rest of the graph
quite difficult to read. Let’s skip the first 100 epochs by running the next cell:

# Exclude the first few epochs so the graph is easier to read
SKIP = 100

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss')
plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

Figure 4-14 presents the graph produced by this cell.
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Figure 4-14. A graph of training and validation loss, skipping the first 100 epochs

Now that we’ve zoomed in, you can see that loss continues to reduce until around 600
epochs, at which point it is mostly stable. This means that there’s probably no need to
train our network for so long.

However, you can also see that the lowest loss value is still around 0.15. This seems
relatively high. In addition, the validation loss values are consistently even higher.

To gain more insight into our model’s performance we can plot some more data. This
time, let’s plot the mean absolute error. Run the next cell to do so:

# Draw a graph of mean absolute error, which is another way of
# measuring the amount of error in the prediction.
mae = history_1.history['mae']
val_mae = history_1.history['val_mae']

plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE')
plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE')
plt.title('Training and validation mean absolute error')
plt.xlabel('Epochs')
plt.ylabel('MAE')
plt.legend()
plt.show()

Figure 4-15 shows the resulting graph.
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Figure 4-15. A graph of mean absolute error during training and validation

This graph of mean absolute error gives us some further clues. We can see that on
average, the training data shows lower error than the validation data, which means
that the network might have overfit, or learned the training data so rigidly that it can’t
make effective predictions about new data.

In addition, the mean absolute error values are quite high, around ~0.31, which
means that some of the model’s predictions are wrong by at least 0.31. Since our
expected values only range in size from –1 to +1, an error of 0.31 means we are very
far from accurately modeling the sine wave.

To get more insight into what is happening, we can plot our network’s predictions for
the training data against the expected values.

This happens in the following cell:

# Use the model to make predictions from our validation data
predictions = model_1.predict(x_train)

# Plot the predictions along with the test data
plt.clf()
plt.title('Training data predicted vs actual values')
plt.plot(x_test, y_test, 'b.', label='Actual')
plt.plot(x_train, predictions, 'r.', label='Predicted')
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plt.legend()
plt.show()

By calling model_1.predict(x_train), we run inference on all of the x values from
the training data. The method returns an array of predictions. Let’s plot this on the
graph alongside the actual y values from our training set. Run the cell to see the graph
in Figure 4-16.

Figure 4-16. A graph of predicted versus actual values for our training data

Oh, dear! The graph makes it clear that our network has learned to approximate the
sine function in a very limited way. The predictions are highly linear, and only very
roughly fit the data.

The rigidity of this fit suggests that the model does not have enough capacity to learn
the full complexity of the sine wave function, so it’s able to approximate it only in an
overly simplistic way. By making our model bigger, we should be able to improve its
performance.

Improving Our Model
Armed with the knowledge that our original model was too small to learn the com‐
plexity of our data, we can try to make it better. This is a normal part of the machine
learning workflow: design a model, evaluate its performance, and make changes in
the hope of seeing improvement.
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An easy way to make the network bigger is to add another layer of neurons. Each
layer of neurons represents a transformation of the input that will hopefully get it
closer to the expected output. The more layers of neurons a network has, the more
complex these transformations can be.

Run the following cell to redefine our model in the same way as earlier, but with an
additional layer of 16 neurons in the middle:

model_2 = tf.keras.Sequential()

# First layer takes a scalar input and feeds it through 16 "neurons." The
# neurons decide whether to activate based on the 'relu' activation function.
model_2.add(layers.Dense(16, activation='relu', input_shape=(1,)))

# The new second layer may help the network learn more complex representations
model_2.add(layers.Dense(16, activation='relu'))

# Final layer is a single neuron, since we want to output a single value
model_2.add(layers.Dense(1))

# Compile the model using a standard optimizer and loss function for regression
model_2.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

# Show a summary of the model
model_2.summary()

As you can see, the code is basically the same as for our first model, but with an addi‐
tional Dense layer. Let’s run the cell to see the summary() results:

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
dense_2 (Dense)              (None, 16)                32
_________________________________________________________________
dense_3 (Dense)              (None, 16)                272
_________________________________________________________________
dense_4 (Dense)              (None, 1)                 17
=================================================================
Total params: 321
Trainable params: 321
Non-trainable params: 0
_________________________________________________________________

With two layers of 16 neurons, our new model is a lot larger. It has (1 * 16) + (16 * 16)
+ (16 * 1) = 288 weights, plus 16 + 16 + 1 = 33 biases, for a total of 288 + 33 = 321
parameters. Our original model had only 49 total parameters, so this is a 555%
increase in model size. Hopefully, this extra capacity will help represent the complex‐
ity of our data.
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The following cell will train our new model. Since our first model stopped improving
so quickly, let’s train for fewer epochs this time—only 600. Run this cell to begin
training:

history_2 = model_2.fit(x_train, y_train, epochs=600, batch_size=16,
                     validation_data=(x_validate, y_validate))

When training is complete, we can take a look at the final log to get a quick feel for
whether things have improved:

Epoch 600/600
600/600 [==============================] - 0s 150us/sample - loss: 0.0115 - 
mae: 0.0859 - val_loss: 0.0104 - val_mae: 0.0806

Wow! You can see that we’ve already achieved a huge improvement—validation loss
has dropped from 0.17 to 0.01, and validation mean absolute error has dropped from
0.32 to 0.08. This looks very promising.

To see how things are going, let’s run the next cell. It’s set up to generate the same
graphs we used last time.

First, we draw a graph of the loss:

# Draw a graph of the loss, which is the distance between
# the predicted and actual values during training and validation.
loss = history_2.history['loss']
val_loss = history_2.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'g.', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

Figure 4-17 shows the result.
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Figure 4-17. A graph of training and validation loss

Next, we draw the same loss graph but with the first 100 epochs skipped so that we
can better see the detail:

# Exclude the first few epochs so the graph is easier to read
SKIP = 100

plt.clf()

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss')
plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

Figure 4-18 presents the output.
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Figure 4-18. A graph of training and validation loss, skipping the first 100 epochs

Finally, we plot the mean absolute error for the same set of epochs:

plt.clf()

# Draw a graph of mean absolute error, which is another way of
# measuring the amount of error in the prediction.
mae = history_2.history['mae']
val_mae = history_2.history['val_mae']

plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE')
plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE')
plt.title('Training and validation mean absolute error')
plt.xlabel('Epochs')
plt.ylabel('MAE')
plt.legend()
plt.show()

Figure 4-19 depicts the graph.
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Figure 4-19. A graph of mean absolute error during training and validation

Great results! From these graphs, we can see two exciting things:

• The metrics are broadly better for validation than training, which means the net‐
work is not overfitting.

• The overall loss and mean absolute error are much better than in our previous
network.

You might be wondering why the metrics for validation are better than those for
training, and not merely identical. The reason is that validation metrics are calculated
at the end of each epoch, meanwhile training metrics are calculated while the epoch
of training is still in progress. This means validation happens on a model that has
been trained for slightly longer.

Based on our validation data, our model seems to be performing great. However, to
be sure of this, we need to run one final test.

Testing
Earlier, we set aside 20% of our data to use for testing. As we discussed, it’s very
important to have separate validation and test data. Since we fine-tune our network
based on its validation performance, there’s a risk that we might accidentally tune the
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model to overfit its validation set and that it might not be able to generalize to new
data. By retaining some fresh data and using it for a final test of our model, we can
make sure that this has not happened.

After we’ve used our test data, we need to resist the urge to tune our model further. If
we did make changes with the goal of improving test performance, we might cause it
to overfit our test set. If we did this, we wouldn’t be able to know, because we’d have
no fresh data left to test with.

This means that if our model performs badly on our test data, it’s time to go back to
the drawing board. We’ll need to stop optimizing the current model and come up
with a brand new architecture.

With that in mind, the following cell will evaluate our model against our test data:

# Calculate and print the loss on our test dataset
loss = model_2.evaluate(x_test, y_test)

# Make predictions based on our test dataset
predictions = model_2.predict(x_test)

# Graph the predictions against the actual values
plt.clf()
plt.title('Comparison of predictions and actual values')
plt.plot(x_test, y_test, 'b.', label='Actual')
plt.plot(x_test, predictions, 'r.', label='Predicted')
plt.legend()
plt.show()

First, we call the model’s evaluate() method with the test data. This will calculate
and print the loss and mean absolute error metrics, informing us as to how far the
model’s predictions deviate from the actual values. Next, we make a set of predictions
and plot them on a graph alongside the actual values.

Now we can run the cell to learn how our model is performing! First, let’s see the
results of evaluate():

200/200 [==============================] - 0s 71us/sample - loss: 0.0103 - mae: 
0.0718

This shows that 200 datapoints were evaluated, which is our entire test set. The model
took 71 microseconds to make each prediction. The loss metric was 0.0103, which is
excellent, and very close to our validation loss of 0.0104. Our mean absolute error,
0.0718, is also very small and fairly close to its equivalent in validation, 0.0806.

This means that our model is working great, and it isn’t overfitting! If the model had
overfit our validation data, we could expect that the metrics on our test set would be
significantly worse than those resulting from validation.
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The graph of our predictions against our actual values, shown in Figure 4-20, makes
it clear how well our model is performing.

Figure 4-20. A graph of predicted versus actual values for our test data

You can see that, for the most part, the dots representing predicted values form a
smooth curve along the center of the distribution of actual values. Our network has
learned to approximate a sine curve, even though the dataset was noisy!

If you look closely, however, you’ll see that there are some imperfections. The peak
and trough of our predicted sine wave are not perfectly smooth, like a real sine wave
would be. Variations in our training data, which is randomly distributed, have been
learned by our model. This is a mild case of overfitting: instead of learning the
smooth sine function, our model has learned to replicate the exact shape of our data.

For our purposes, this overfitting isn’t a major problem. Our goal is for this model to
gently fade an LED on and off, and it doesn’t need to be perfectly smooth to achieve
this. If we thought the level of overfitting was problematic, we could attempt to
address it through regularization techniques or by obtaining more training data.

Now that we’re happy with our model, let’s get it ready to deploy on-device!
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Converting the Model for TensorFlow Lite
At the beginning of this chapter we briefly touched on TensorFlow Lite, which is a set
of tools for running TensorFlow models on “edge devices”—meaning everything
from mobile phones down to microcontroller boards.

Chapter 13 goes into detail on TensorFlow Lite for Microcontrollers. For now, we can
think of it as having two main components:

TensorFlow Lite Converter
This converts TensorFlow models into a special, space-efficient format for use on
memory-constrained devices, and it can apply optimizations that further reduce
the model size and make it run faster on small devices.

TensorFlow Lite Interpreter
This runs an appropriately converted TensorFlow Lite model using the most effi‐
cient operations for a given device.

Before we use our model with TensorFlow Lite, we need to convert it. We use the
TensorFlow Lite Converter’s Python API to do this. It takes our Keras model and
writes it to disk in the form of a FlatBuffer, which is a special file format designed to
be space-efficient. Because we’re deploying to devices with limited memory, this will
come in handy! We’ll look at FlatBuffers in more detail in Chapter 12.

In addition to creating a FlatBuffer, the TensorFlow Lite Converter can also apply
optimizations to the model. These optimizations generally reduce the size of the
model, the time it takes to run, or both. This can come at the cost of a reduction in
accuracy, but the reduction is often small enough that it’s worthwhile. You can read
more about optimizations in Chapter 13.

One of the most useful optimizations is quantization. By default, the weights and bia‐
ses in a model are stored as 32-bit floating-point numbers so that high-precision cal‐
culations can occur during training. Quantization allows you to reduce the precision
of these numbers so that they fit into 8-bit integers—a four times reduction in size.
Even better, because it’s easier for a CPU to perform math with integers than with
floats, a quantized model will run faster.

The coolest thing about quantization is that it often results in minimal loss in accu‐
racy. This means that when deploying to low-memory devices, it is nearly always
worthwhile.

In the following cell, we use the converter to create and save two new versions of our
model. The first is converted to the TensorFlow Lite FlatBuffer format, but without
any optimizations. The second is quantized.

Run the cell to convert the model into these two variants:
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# Convert the model to the TensorFlow Lite format without quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
tflite_model = converter.convert()

# Save the model to disk
open("sine_model.tflite," "wb").write(tflite_model)

# Convert the model to the TensorFlow Lite format with quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
# Indicate that we want to perform the default optimizations,
# which include quantization
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# Define a generator function that provides our test data's x values
# as a representative dataset, and tell the converter to use it
def representative_dataset_generator():
  for value in x_test:
    # Each scalar value must be inside of a 2D array that is wrapped in a list
    yield [np.array(value, dtype=np.float32, ndmin=2)]
converter.representative_dataset = representative_dataset_generator
# Convert the model
tflite_model = converter.convert()

# Save the model to disk
open("sine_model_quantized.tflite," "wb").write(tflite_model)

To create a quantized model that runs as efficiently as possible, we need to provide a
representative dataset—a set of numbers that represent the full range of input values
of the dataset on which the model was trained.

In the preceding cell, we can use our test dataset’s x values as a representative dataset.
We define a function, representative_dataset_generator(), that uses the yield
operator to return them one by one.

To prove these models are still accurate after conversion and quantization, we use
both of them to make predictions and compare these against our test results. Given
that these are TensorFlow Lite models, we need to use the TensorFlow Lite interpreter
to do so.

Because it’s designed primarily for efficiency, the TensorFlow Lite interpreter is
slightly more complicated to use than the Keras API. To make predictions with our
Keras model, we could just call the predict() method, passing an array of inputs.
With TensorFlow Lite, we need to do the following:

1. Instantiate an Interpreter object.
2. Call some methods that allocate memory for the model.
3. Write the input to the input tensor.
4. Invoke the model.
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5. Read the output from the output tensor.

This sounds like a lot, but don’t worry about it too much for now; we’ll walk through
it in detail in Chapter 5. For now, run the following cell to make predictions with
both models and plot them on a graph, alongside the results from our original,
unconverted model:

# Instantiate an interpreter for each model
sine_model = tf.lite.Interpreter('sine_model.tflite')
sine_model_quantized = tf.lite.Interpreter('sine_model_quantized.tflite')

# Allocate memory for each model
sine_model.allocate_tensors()
sine_model_quantized.allocate_tensors()

# Get indexes of the input and output tensors
sine_model_input_index = sine_model.get_input_details()[0]["index"]
sine_model_output_index = sine_model.get_output_details()[0]["index"]
sine_model_quantized_input_index = sine_model_quantized.get_input_details()[0]
["index"]
sine_model_quantized_output_index = \
  sine_model_quantized.get_output_details()[0]["index"]

# Create arrays to store the results
sine_model_predictions = []
sine_model_quantized_predictions = []

# Run each model's interpreter for each value and store the results in arrays
for x_value in x_test:
  # Create a 2D tensor wrapping the current x value
  x_value_tensor = tf.convert_to_tensor([[x_value]], dtype=np.float32)
  # Write the value to the input tensor
  sine_model.set_tensor(sine_model_input_index, x_value_tensor)
  # Run inference
  sine_model.invoke()
  # Read the prediction from the output tensor
  sine_model_predictions.append(
      sine_model.get_tensor(sine_model_output_index)[0])
  # Do the same for the quantized model
  sine_model_quantized.set_tensor\
  (sine_model_quantized_input_index, x_value_tensor)
  sine_model_quantized.invoke()
  sine_model_quantized_predictions.append(
      sine_model_quantized.get_tensor(sine_model_quantized_output_index)[0])

# See how they line up with the data
plt.clf()
plt.title('Comparison of various models against actual values')
plt.plot(x_test, y_test, 'bo', label='Actual')
plt.plot(x_test, predictions, 'ro', label='Original predictions')
plt.plot(x_test, sine_model_predictions, 'bx', label='Lite predictions')
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plt.plot(x_test, sine_model_quantized_predictions, 'gx', \
  label='Lite quantized predictions')
plt.legend()
plt.show()

Running this cell yields the graph in Figure 4-21.

Figure 4-21. A graph comparing models’ predictions against the actual values

We can see from the graph that the predictions for the original model, the converted
model, and the quantized model are all close enough to be indistinguishable. Things
are looking good!

Since quantization makes models smaller, let’s compare both converted models to see
the difference in size. Run the following cell to calculate their sizes and compare
them:

import os
basic_model_size = os.path.getsize("sine_model.tflite")
print("Basic model is %d bytes" % basic_model_size)
quantized_model_size = os.path.getsize("sine_model_quantized.tflite")
print("Quantized model is %d bytes" % quantized_model_size)
difference = basic_model_size - quantized_model_size
print("Difference is %d bytes" % difference)

You should see the following output:
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Basic model is 2736 bytes
Quantized model is 2512 bytes
Difference is 224 bytes

Our quantized model is 224 bytes smaller than the original version, which is great—
but it’s only a minor reduction in size. At around 2.4 KB, this model is already so
small that the weights and biases make up only a fraction of the overall size. In
addition to weights, the model contains all the logic that makes up the architecture of
our deep learning network, known as its computation graph. For truly tiny models,
this can add up to more size than the model’s weights, meaning quantization has little
effect.

More complex models have many more weights, meaning the space saving from
quantization will be much higher. It can be expected to approach four times for most
sophisticated models.

Regardless of its exact size, our quantized model will take less time to execute than
the original version, which is important on a tiny microcontroller.

Converting to a C File
The final step in preparing our model for use with TensorFlow Lite for Microcontrol‐
lers is to convert it into a C source file that can be included in our application.

So far during this chapter, we’ve been using TensorFlow Lite’s Python API. This
means that we’ve been able to use the Interpreter constructor to load our model
files from disk.

However, most microcontrollers don’t have a filesystem, and even if they did, the
extra code required to load a model from disk would be wasteful given our limited
space. Instead, as an elegant solution, we provide the model in a C source file that can
be included in our binary and loaded directly into memory.

In the file, the model is defined as an array of bytes. Fortunately, there’s a convenient
Unix tool named xxd that is able to convert a given file into the required format.

The following cell runs xxd on our quantized model, writes the output to a file called
sine_model_quantized.cc, and prints it to the screen:

# Install xxd if it is not available
!apt-get -qq install xxd
# Save the file as a C source file
!xxd -i sine_model_quantized.tflite > sine_model_quantized.cc
# Print the source file
!cat sine_model_quantized.cc

The output is very long, so we won’t reproduce it all here, but here’s a snippet that
includes just the beginning and end:
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unsigned char sine_model_quantized_tflite[] = {
  0x1c, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x12, 0x00,
  0x1c, 0x00, 0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14, 0x00,
  // ...
  0x00, 0x00, 0x08, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,
  0x04, 0x00, 0x00, 0x00
};
unsigned int sine_model_quantized_tflite_len = 2512;

To use this model in a project, you could either copy and paste the source or down‐
load the file from the notebook.

Wrapping Up
And with that, we’re done building our model. We’ve trained, evaluated, and con‐
verted a TensorFlow deep learning network that can take a number between 0 and 2π
and output a good-enough approximation of its sine.

This was our first taste of using Keras to train a tiny model. In future projects, we’ll be
training models that are still tiny, but far more sophisticated.

For now, let’s move on to Chapter 5, where we’ll write code to run our model on
microcontrollers.
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CHAPTER 5

The “Hello World” of TinyML:
Building an Application

A model is just one part of a machine learning application. Alone, it’s just a blob of
information; it can’t do much at all. To use our model, we need to wrap it in code that
sets up the necessary environment for it to run, provides it with inputs, and uses its
outputs to generate behavior. Figure 5-1 shows how the model, on the right hand
side, fits into a basic TinyML application.

In this chapter, we will build an embedded application that uses our sine model to
create a tiny light show. We’ll set up a continuous loop that feeds an x value into the
model, runs inference, and uses the result to switch an LED on and off, or to control
an animation if our device has an LCD display.

This application has already been written. It’s a C++ 11 program whose code is
designed to show the smallest possible implementation of a full TinyML application,
avoiding any complex logic. This simplicity makes it a helpful tool for learning how
to use TensorFlow Lite for Microcontrollers, since you can see exactly what code is
necessary and very little else. It also makes it a useful template. After reading this
chapter, you’ll understand the general structure of a TensorFlow Lite for Microcon‐
trollers program, and you can reuse the same structure in your own projects.

This chapter walks through the application code and explains how it works. The next
chapter will provide detailed instructions for building and deploying it to several
devices.
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Figure 5-1. A basic TinyML application architecture

If you’re not familiar with C++, don’t panic. The code is relatively simple, and we
explain everything in detail. By the time we’re done, you should feel comfortable with
all the code that’s required to run a model, and you might even learn a little C++
along the way.

Remember, since TensorFlow is an actively developed open source
project, there might be some minor differences between the code
printed here and the code online. Don’t worry—even if a few lines
of code change, the basic principles remain the same.

Walking Through the Tests
Before getting our hands dirty with application code, it’s often a good idea to write
some tests. Tests are short snippets of code that demonstrate a particular piece of
logic. Since they are made of working code, we can run them to prove that the code
does what it’s supposed to. After we have written them, tests are often run automati‐
cally as a way to continually verify that a project is still doing what we expect despite
any changes we might make to its code. They’re also very useful as working examples
of how to do things.

The hello_world example has a test, defined in hello_world_test.cc, that loads our
model and uses it to run inference, checking that its predictions are what we expect. It
contains the exact code needed to do this, and nothing else, so it will be a great place
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to start learning TensorFlow Lite for Microcontrollers. In this section, we walk
through the test and explain what each and every part of it does. After we’re done
reading the code, we can run the test to prove that it’s correct.

Let’s now walk through it, section by section. If you’re at a computer, it might be help‐
ful to open up hello_world_test.cc and follow along.

Including Dependencies
The first part, below the license header (which specifies that anybody can use or share
this code under the Apache 2.0 open source license), looks like this:

#include "tensorflow/lite/micro/examples/hello_world/sine_model_data.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/testing/micro_test.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"

The #include directive is a way for C++ code to specify other code that it depends
on. When a code file is referenced with an #include, any logic or variables it defines
will be available for us to use. In this section, we use #include to import the following
items:

tensorflow/lite/micro/examples/hello_world/sine_model_data.h
The sine model we trained, converted, and transformed into C++ using xxd

tensorflow/lite/micro/kernels/all_ops_resolver.h
A class that allows the interpreter to load the operations used by our model

tensorflow/lite/micro/micro_error_reporter.h
A class that can log errors and output to help with debugging

tensorflow/lite/micro/micro_interpreter.h
The TensorFlow Lite for Microcontrollers interpreter, which will run our model

tensorflow/lite/micro/testing/micro_test.h
A lightweight framework for writing tests, which allows us to run this file as a test

tensorflow/lite/schema/schema_generated.h
The schema that defines the structure of TensorFlow Lite FlatBuffer data, used to
make sense of the model data in sine_model_data.h

tensorflow/lite/version.h
The current version number of the schema, so we can check that the model was
defined with a compatible version

We’ll talk more about some of these dependencies as we dig into the code.
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By convention, C++ code designed to be used with #include direc‐
tives is written as two files: a .cc file, known as the source file, and
a .h file, known as the header file. Header files define the interface
that allows the code to connect to other parts of the program. They
contain things like variable and class declarations, but very little
logic. Source files implement the actual logic that performs compu‐
tation and makes things happen.
When we #include a dependency, we specify its header file. For
example, the test we’re walking through includes micro_inter‐
preter.h. If we look at that file, we can see that it defines a class but
doesn’t contain much logic. Instead, its logic is contained within
micro_interpreter.cc.

Setting Up the Test
The next part of the code is used by the TensorFlow Lite for Microcontrollers testing
framework. It looks like this:

TF_LITE_MICRO_TESTS_BEGIN

TF_LITE_MICRO_TEST(LoadModelAndPerformInference) {

In C++, you can define specially named chunks of code that can be reused by includ‐
ing their names elsewhere. These chunks of code are called macros. The two state‐
ments here, TF_LITE_MICRO_TESTS_BEGIN and TF_LITE_MICRO_TEST, are the names
of macros. They are defined in the file micro_test.h.

These macros wrap the rest of our code in the necessary apparatus for it to be exe‐
cuted by the TensorFlow Lite for Microcontrollers testing framework. We don’t need
to worry about how exactly this works; we just know that we can use these macros as
shortcuts to set up a test.

The second macro, named TF_LITE_MICRO_TEST, accepts an argument. In this case,
the argument being passed in is LoadModelAndPerformInference. This argument is
the test name, and when the tests are run, it will be output along with the test results
so that we can see whether the test passed or failed.

Getting Ready to Log Data
The remaining code in the file is the actual logic of our test. Let’s take a look at the
first portion:

// Set up logging
tflite::MicroErrorReporter micro_error_reporter;
tflite::ErrorReporter* error_reporter = &micro_error_reporter;

In the first line, we define a MicroErrorReporter instance. The MicroErrorReporter
class is defined in micro_error_reporter.h. It provides a mechanism for logging debug
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information during inference. We’ll be calling it to print debug information, and the
TensorFlow Lite for Microcontrollers interpreter will use it to print any errors it
encounters.

You’ve probably noticed the tflite:: prefix before each of the
type names, such as tflite::MicroErrorReporter. This is a name‐
space, which is just a way to help organize C++ code. TensorFlow
Lite defines all of its useful stuff under the namespace tflite,
which means that if another library happens to implement classes
with the same name, they won’t conflict with those that TensorFlow
Lite provides.

The first declaration seems straightforward, but what about the funky-looking second
line, with the * and & characters? Why are we declaring an ErrorReporter when we
already have a MicroErrorReporter?

tflite::ErrorReporter* error_reporter = &micro_error_reporter;

To explain what is happening here, we need to know a little background information.

MicroErrorReporter is a subclass of the ErrorReporter class, which provides a tem‐
plate for how this sort of debug logging mechanism should work in TensorFlow Lite.
MicroErrorReporter overrides one of ErrorReporter’s methods, replacing it with
logic that is specifically written for use on microcontrollers.

In the preceding code line, we create a variable called error_reporter, which has the
type ErrorReporter. It’s also a pointer, indicated by the * used in its declaration.

A pointer is a special type of variable that, instead of holding a value, holds a refer‐
ence to a location in memory where a value can be found. In C++, a pointer of a cer‐
tain class (such as ErrorReporter) can point to a value that is one of its child classes
(such as MicroErrorReporter).

As we mentioned earlier, MicroErrorReporter overrides one of the methods of
ErrorReporter. Without going into too much detail, the process of overriding this
method has the side effect of obscuring some of its other methods.

To still have access to the non overridden methods of ErrorReporter, we need to
treat our MicroErrorReporter instance as if it were actually an ErrorReporter. We
achieve this by creating an ErrorReporter pointer and pointing it at the
micro_error_reporter variable. The ampersand (&) in front of
micro_error_reporter in the assignment means that we are assigning its pointer, not
its value.
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Phew! This sounds complicated. Don’t panic if you found it difficult to follow; C++
can be a little unwieldy. For our purposes, all we need to know is that that we should
use error_reporter to print debug information, and that it’s a pointer.

Mapping Our Model
The reason we immediately set up a mechanism for printing debug information is so
that we can log any problems that occur in the rest of the code. We rely on this in the
next piece of code:

// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
const tflite::Model* model = ::tflite::GetModel(g_sine_model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(
    "Model provided is schema version %d not equal "
    "to supported version %d.\n",
    model->version(), TFLITE_SCHEMA_VERSION);
    return 1;
}

In the first line, we take our model data array (defined in the file sine_model_data.h)
and pass it into a method named GetModel(). This method returns a Model pointer,
which is assigned to a variable named model. As you might have anticipated, this vari‐
able represents our model.

The type Model is a struct, which in C++ is very similar to class. It’s defined in
schema_generated.h, and it holds our model’s data and allows us to query information
about it.

Data Alignment
If you inspect our model’s source file in sine_model_data.cc, you’ll see that the defini‐
tion of g_sine_model_data references a macro, DATA_ALIGN_ATTRIBUTE:

const unsigned char g_sine_model_data[] DATA_ALIGN_ATTRIBUTE = {

Processors can read data most efficiently when it is aligned in memory, meaning data
structures are stored so that they don’t overlap the boundaries of what the processor
can read in a single operation. By specifying this macro we make sure that, when pos‐
sible, our model data is correctly aligned for optimal read performance. If you’re curi‐
ous, you can read about alignment in the Wikipedia article.

As soon as model is ready, we call a method that retrieves the model’s version number:

if (model->version() != TFLITE_SCHEMA_VERSION) {
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We then compare the model’s version number to TFLITE_SCHEMA_VERSION, which
indicates the version of the TensorFlow Lite library we are currently using. If the
numbers match, our model was converted with a compatible version of the Tensor‐
Flow Lite Converter. It’s good practice to check the model version, because a mis‐
match might result in strange behavior that is tricky to debug.

In the preceding line of code, version() is a method that belongs
to model. Notice the arrow (->) that points from model to ver
sion(). This is C++’s arrow operator, and it’s used whenever we
want to access the members of an object to which we have a
pointer. If we had the object itself (and not just a pointer), we
would use a dot (.) to access its members.

If the version numbers don’t match, we’ll carry on anyway, but we’ll log a warning
using our error_reporter:

error_reporter->Report(
    "Model provided is schema version %d not equal "
    "to supported version %d.\n",
    model->version(), TFLITE_SCHEMA_VERSION);

We call the Report() method of error_reporter to log this warning. Since
error_reporter is also a pointer, we use the -> operator to access Report().

The Report() method is designed to behave similarly to a commonly used C++
method, printf(), which is used to log text. As its first parameter, we pass in a string
that we want to log. This string contains two %d format specifiers, which act as place‐
holders where variables will be inserted when the message is logged. The next two
parameters we pass in are the model version and the TensorFlow Lite schema version.
These will be inserted into the string, in order, to replace the %d characters.

The Report() method supports different format specifiers that
work as placeholders for different types of variables. %d should be
used as a placeholder for integers, %f should be used as a place‐
holder for floating-point numbers, and %s should be used as a
placeholder for strings.

Creating an AllOpsResolver
So far so good! Our code can log errors, and we’ve loaded our model into a handy
struct and checked that it is a compatible version. We’ve been moving a little slowly,
given that we’re reviewing some C++ concepts along the way, but things are starting
to make sense.

Next up, we create an instance of AllOpsResolver:
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// This pulls in all the operation implementations we need
tflite::ops::micro::AllOpsResolver resolver;

This class, defined in all_ops_resolver.h, is what allows the TensorFlow Lite for Micro‐
controllers interpreter to access operations.

In Chapter 3, you learned that a machine learning model is composed of various
mathematical operations that are run successively to transform input into output.
The AllOpsResolver class knows all of the operations that are available to Tensor‐
Flow Lite for Microcontrollers and is able to provide them to the interpreter.

Defining a Tensor Arena
We almost have all the ingredients ready to create an interpreter. The final thing we
need to do is allocate an area of working memory that our model will need while it
runs:

// Create an area of memory to use for input, output, and intermediate arrays.
// Finding the minimum value for your model may require some trial and error.
const int tensor_arena_size = 2 × 1024;
uint8_t tensor_arena[tensor_arena_size];

As the comment says, this area of memory will be used to store the model’s input,
output, and intermediate tensors. We call it our tensor arena. In our case, we’ve allo‐
cated an array that is 2,048 bytes in size. We specify this with the expression
2 × 1024.

So, how large should our tensor arena be? That’s a good question. Unfortunately,
there’s not a simple answer. Different model architectures have different sizes and
numbers of input, output, and intermediate tensors, so it’s difficult to know how
much memory we’ll need. The number doesn’t need to be exact—we can reserve
more memory than we need—but since microcontrollers have limited RAM, we
should keep it as small as possible so there’s space for the rest of our program.

We can do this through trial and error. That’s why we express the array size as n ×
1024: so that it’s easy to scale the number up and down (by changing n) while keeping
it a multiple of eight. To find the correct array size, start fairly high so that you can be
sure it works. The highest number used in this book’s examples is 70 × 1024. Then,
reduce the number until your model no longer runs. The last number that worked is
the correct one!

Creating an Interpreter
Now that we’ve declared tensor_arena, we’re ready to set up the interpreter. Here’s
how that looks:

// Build an interpreter to run the model with
tflite::MicroInterpreter interpreter(model, resolver, tensor_arena,
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                                     tensor_arena_size, error_reporter);

// Allocate memory from the tensor_arena for the model's tensors
interpreter.AllocateTensors();

First, we declare a MicroInterpreter named interpreter. This class is the heart of
TensorFlow Lite for Microcontrollers: a magical piece of code that will execute our
model on the data we provide. We pass in most of the objects we’ve created so far to
its constructor, and then make a call to AllocateTensors().

In the previous section, we set aside an area of memory by defining an array called
tensor_arena. The AllocateTensors() method walks through all of the tensors
defined by the model and assigns memory from the tensor_arena to each of them.
It’s critical that we call AllocateTensors() before attempting to run inference,
because otherwise inference will fail.

Inspecting the Input Tensor
After we’ve created an interpreter, we need to provide some input for our model. To
do this, we write our input data to the model’s input tensor:

// Obtain a pointer to the model's input tensor
TfLiteTensor* input = interpreter.input(0);

To grab a pointer to an input tensor, we call the interpreter’s input() method. Since a
model can have multiple input tensors, we need to pass an index to the input()
method that specifies which tensor we want. In this case, our model has only one
input tensor, so its index is 0.

In TensorFlow Lite, tensors are represented by the TfLiteTensor struct, which is
defined in c_api_internal.h. This struct provides an API for interacting with and
learning about tensors. In the next chunk of code, we use this functionality to verify
that our tensor looks and feels correct. Because we’ll be using tensors a lot, let’s walk
through this code to become familiar with how the TfLiteTensor struct works:

// Make sure the input has the properties we expect
TF_LITE_MICRO_EXPECT_NE(nullptr, input);
// The property "dims" tells us the tensor's shape. It has one element for
// each dimension. Our input is a 2D tensor containing 1 element, so "dims"
// should have size 2.
TF_LITE_MICRO_EXPECT_EQ(2, input->dims->size);
// The value of each element gives the length of the corresponding tensor.
// We should expect two single element tensors (one is contained within the
// other).
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[1]);
// The input is a 32 bit floating point value
TF_LITE_MICRO_EXPECT_EQ(kTfLiteFloat32, input->type);

Walking Through the Tests | 79

https://oreil.ly/Qvhre


The first thing you’ll notice is a couple of macros: TFLITE_MICRO_EXPECT_NE and
TFLITE_MICRO_EXPECT_EQ. These macros are part of the TensorFlow Lite for Micro‐
controllers testing framework, and they allow us to make assertions about the values
of variables, proving that they have certain expected values.

For example, the macro TF_LITE_MICRO_EXPECT_NE is designed to assert that the two
variables it is called with are not equal (hence the _NE part of its name, which stands
for Not Equal). If the variables are not equal, the code will continue to execute. If they
are equal, an error will be logged, and the test will be marked as having failed.

More Assertions
The macros for assertions are defined in micro_test.h, and you can read the file to see
how they work. Here are the available assertions:

TF_LITE_MICRO_EXPECT(x)
Asserts that x evaluates to true.

TF_LITE_MICRO_EXPECT_EQ(x, y)
Asserts that x is equal to y.

TF_LITE_MICRO_EXPECT_NE(x, y)
Asserts that x is not equal to y.

TF_LITE_MICRO_EXPECT_NEAR(x, y, epsilon)
For numeric values, asserts that the difference between x and y is less than or
equal to epsilon. For example, TF_LITE_MICRO_EXPECT_NEAR(5, 7, 3) would
pass, because the difference between 5 and 7 is 2.

TF_LITE_MICRO_EXPECT_GT(x, y)
For numeric values, asserts that x is greater than y.

TF_LITE_MICRO_EXPECT_LT(x, y)
For numeric values, asserts that x is less than y.

TF_LITE_MICRO_EXPECT_GE(x, y)
For numeric values, asserts that x greater than or equal to y.

TF_LITE_MICRO_EXPECT_LE(x, y)
For numeric values, asserts that x is less than or equal to y.

The first thing we check is that our input tensor actually exists. To do this, we assert
that it is not equal to a nullptr, which is a special C++ value representing a pointer
that is not actually pointing at any data:

TF_LITE_MICRO_EXPECT_NE(nullptr, input);
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The next thing we check is the shape of our input tensor. As discussed in Chapter 3,
all tensors have a shape, which is a way of describing their dimensionality. The input
to our model is a scalar value (meaning a single number). However, due to the way
Keras layers accept input, this value must be provided inside of a 2D tensor contain‐
ing one number. For an input of 0, it should look like this:

[[0]]

Note how the input scalar, 0, is wrapped inside of two vectors, making this a 2D ten‐
sor.

The TfLiteTensor struct contains a dims member that describes the dimensions of
the tensor. The member is a struct of type TfLiteIntArray, also defined in
c_api_internal.h. Its size member represents the number of dimensions that the ten‐
sor has. Since the input tensor should be 2D, we can assert that the value of size is 2:

TF_LITE_MICRO_EXPECT_EQ(2, input->dims->size);

We can further inspect the dims struct to ensure the tensor’s structure is what we
expect. Its data variable is an array with one element for each dimension. Each ele‐
ment is an integer representing the size of that dimension. Because we are expecting a
2D tensor containing one element in each dimension, we can assert that both dimen‐
sions contain a single element:

TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[1]);

We can now be confident that our input tensor has the correct shape. Finally, since
tensors can consist of a variety of different types of data (think integers, floating-point
numbers, and Boolean values), we should make sure that our input tensor has the
correct type.

The tensor struct’s type variable informs us of the data type of the tensor. We’ll be
providing a 32-bit floating-point number, represented by the constant
kTfLiteFloat32, and we can easily assert that the type is correct:

TF_LITE_MICRO_EXPECT_EQ(kTfLiteFloat32, input->type);

Perfect—our input tensor is now guaranteed to be the correct size and shape for our
input data, which will be a single floating-point value. We’re ready to run inference!

Running Inference on an Input
To run inference, we need to add a value to our input tensor and then instruct the
interpreter to invoke the model. Afterward, we will check whether the model success‐
fully ran. Here’s how that looks:

// Provide an input value
input->data.f[0] = 0.;
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// Run the model on this input and check that it succeeds
TfLiteStatus invoke_status = interpreter.Invoke();
if (invoke_status != kTfLiteOk) {
 error_reporter->Report("Invoke failed\n");
}
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, invoke_status);

TensorFlow Lite’s TfLiteTensor struct has a data variable that we can use to set the
contents of our input tensor. You can see this being used here:

input->data.f[0] = 0.;

The data variable is a TfLitePtrUnion—it’s a union, which is a special C++ data type
that allows you to store different data types at the same location in memory. Since a
given tensor can contain one of many different types of data (for example, floating-
point numbers, integers, or Booleans), a union is the perfect type to help us store it.

The TfLitePtrUnion union is declared in c_api_internal.h. Here’s what it looks like:

// A union of pointers that points to memory for a given tensor.
typedef union {
  int32_t* i32;
  int64_t* i64;
  float* f;
  TfLiteFloat16* f16;
  char* raw;
  const char* raw_const;
  uint8_t* uint8;
  bool* b;
  int16_t* i16;
  TfLiteComplex64* c64;
  int8_t* int8;
} TfLitePtrUnion;

You can see that there are a bunch of members, each representing a certain type. Each
member is a pointer, which can point at a place in memory where the data should be
stored. When we call interpreter.AllocateTensors(), like we did earlier, the
appropriate pointer is set to point at the block of memory that was allocated for the
tensor to store its data. Because each tensor has a specific data type, only the pointer
for the corresponding type will be set.

This means that to store data, we can use whichever is the appropriate pointer in our
TfLitePtrUnion. For example, if our tensor is of type kTfLiteFloat32, we’ll use
data.f.

Since the pointer points at a block of memory, we can use square brackets ([]) after
the pointer name to instruct our program where to store the data. In our example, we
do the following:

input->data.f[0] = 0.;
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The value we’re assigning is written as 0., which is shorthand for 0.0. By specifying
the decimal point, we make it clear to the C++ compiler that this value should be a
floating-point number, not an integer.

You can see that we assign this value to data.f[0]. This means that we’re assigning it
as the first item in our block of allocated memory. Given that there’s only one value,
this is all we need to do.

More Complex Inputs
In the example we’re walking through, our model accepts a scalar input, so we have to
assign only one value (input->data.f[0] = 0.). If our model’s input was a vector
consisting of several values, we would add them to subsequent memory locations.

Here’s an example of a vector containing the numbers 1, 2, and 3:

[1 2 3]

And here’s how we might set these values in a TfLiteTensor:

// Vector with 6 elements
input->data.f[0] = 1.;
input->data.f[1] = 2.;
input->data.f[2] = 3.;

But what about matrices, which consist of multiple vectors? Here’s an example:

[[1 2 3]
 [4 5 6]]

To set this in a TfLiteTensor, we just assign the values in order, from left to right and
top to bottom. This is called flattening, because we squash the structure from two to
one dimension:

// Vector with 3 elements
input->data.f[0] = 1.;
input->data.f[1] = 2.;
input->data.f[2] = 3.;
input->data.f[3] = 4.;
input->data.f[4] = 5.;
input->data.f[5] = 6.;

Because the TfLiteTensor struct has a record of its actual dimensions, it knows
which locations in memory correspond to which elements in its multidimensional
shape, even though the memory has a flat structure. We make use of 2D input tensors
in the later chapters to feed in images and other 2D data.

After we’ve set up the input tensor, it’s time to run inference. This is a one-liner:

TfLiteStatus invoke_status = interpreter.Invoke();

Walking Through the Tests | 83



When we call Invoke() on the interpreter, the TensorFlow Lite interpreter runs the
model. The model consists of a graph of mathematical operations which the inter‐
preter executes to transform the input data into an output. This output is stored in
the model’s output tensors, which we’ll dig into later.

The Invoke() method returns a TfLiteStatus object, which lets us know whether
inference was successful or there was a problem. Its value can either be kTfLiteOk or
kTfLiteError. We check for an error and report it if there is one:

if (invoke_status != kTfLiteOk) {
    error_reporter->Report("Invoke failed\n");
}

Finally, we assert that the status must be kTfLiteOk in order for our test to pass:

TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, invoke_status);

That’s it—inference has been run! Next up, we grab the output and make sure it looks
good.

Reading the Output
Like the input, our model’s output is accessed through a TfLiteTensor, and getting a
pointer to it is just as simple:

TfLiteTensor* output = interpreter.output(0);

The output is, like the input, a floating-point scalar value nestled inside a 2D tensor.
For the sake of our test, we double-check that the output tensor has the expected size,
dimensions, and type:

TF_LITE_MICRO_EXPECT_EQ(2, output->dims->size);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[0]);
TF_LITE_MICRO_EXPECT_EQ(1, input->dims->data[1]);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteFloat32, output->type);

Yep, it all looks good. Now, we grab the output value and inspect it to make sure that
it meets our high standards. First we assign it to a float variable:

// Obtain the output value from the tensor
float value = output->data.f[0];

Each time inference is run, the output tensor will be overwritten with new values.
This means that if you want to keep an output value around in your program while
continuing to run inference, you’ll need to copy it from the output tensor, like we just
did.

Next, we use TF_LITE_MICRO_EXPECT_NEAR to prove that the value is close to the value
we’re expecting:

// Check that the output value is within 0.05 of the expected value
TF_LITE_MICRO_EXPECT_NEAR(0., value, 0.05);
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As we saw earlier, TF_LITE_MICRO_EXPECT_NEAR asserts that the difference between its
first argument and its second argument is less than the value of its third argument. In
this statement, we’re testing that the output is within 0.05 of 0, which is the mathe‐
matical sine of the input, 0.

There are two reasons why we expect a number that is near to what
we want, but not an exact value. The first is that our model only
approximates the real sine value, so we know that it will not be
exactly correct. The second is because floating-point calculations
on computers have a margin of error. The error can vary from
computer to computer: for example, a laptop’s CPU might come up
with slightly different results to an Arduino. By having flexible
expectations, we make it more likely that our test will pass on any
platform.

If this test passes, things are looking good. The remaining tests run inference a few
more times, just to further prove that our model is working. To run inference again,
all we need to do is assign a new value to our input tensor, call
interpreter.Invoke(), and read the output from our output tensor:

// Run inference on several more values and confirm the expected outputs
input->data.f[0] = 1.;
interpreter.Invoke();
value = output->data.f[0];
TF_LITE_MICRO_EXPECT_NEAR(0.841, value, 0.05);

input->data.f[0] = 3.;
interpreter.Invoke();
value = output->data.f[0];
TF_LITE_MICRO_EXPECT_NEAR(0.141, value, 0.05);

input->data.f[0] = 5.;
interpreter.Invoke();
value = output->data.f[0];
TF_LITE_MICRO_EXPECT_NEAR(-0.959, value, 0.05);

Note how we’re reusing the same input and output tensor pointer. Because we
already have the pointers, we don’t need to call interpreter.input(0) or
interpreter.output(0) again.

At this point in our tests we’ve proven that TensorFlow Lite for Microcontrollers can
successfully load our model, allocate the appropriate input and output tensors, run
inference, and return the expected results. The final thing to do is indicate the end of
the tests by using a macro:

}

TF_LITE_MICRO_TESTS_END
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And with that, we’re done walking through the tests. Next, let’s run them!

Running the Tests
Even though this code is eventually destined to run on microcontrollers, we can still
build and run our tests on our development machine. This makes it much easier to
write and debug code. Compared with microcontrollers, a personal computer has far
more convenient tools for logging output and stepping through code, which makes it
a lot simpler to figure out any bugs. In addition, deploying code to a device takes
time, so it’s a lot quicker to just run our code locally.

A good workflow for building embedded applications (or, honestly, any kind of soft‐
ware) is to write as much of the logic as you can in tests that can be run on a normal
development machine. There’ll always be some parts that require the actual hardware
to run, but the more you can test locally, the easier your life will be.

Practically, this means that we should try to write the code that preprocesses inputs,
runs inference with the model, and processes any outputs in a set of tests before try‐
ing to get it working on-device. In Chapter 7, we walk through a speech recognition
application that is much more complex than this example. You’ll see how we’ve writ‐
ten detailed unit tests for each of its components.

Grabbing the code
Until now, between Colab and GitHub, we’ve been doing everything in the cloud. To
run our tests, we need to pull down the code to our development computer and com‐
pile it.

To do all this, we need the following software tools:

• A terminal emulator, such as Terminal in macOS
• A bash shell (the default in macOS prior to Catalina and most Linux distribu‐

tions)
• Git (installed by default in macOS and most Linux distributions)
• Make, version 3.82 or later

Git and Make
Git and Make are often preinstalled on modern operating systems. To check whether
they are installed on your system, open a terminal and do the following:

For Git
Any version of Git will work. To confirm Git is installed, enter git at the com‐
mand line. You should see usage instructions being printed.

86 | Chapter 5: The “Hello World” of TinyML: Building an Application

https://git-scm.com/


For Make
To check the version of Make installed, enter make --version at the command
line. You need a version greater than 3.82.

If you are missing either tool, you should search the web for instructions on installing
them for your specific operating system.

After you have all the tools, open up a terminal and enter the command that follows
to download the TensorFlow source code, which includes the example code we’re
working with. It will create a directory containing the source code in whatever loca‐
tion you run it:

git clone https://github.com/tensorflow/tensorflow.git

Next, change into the tensorflow directory that was just created:

cd tensorflow

Great stuff—we’re now ready to run some code!

Using Make to run the tests
As you saw from our list of tools, we use a program called Make to run the tests.
Make is a tool for automating build tasks in software. It’s been in use since 1976,
which in computing terms is almost forever. Developers use a special language, writ‐
ten in files called Makefiles, to instruct Make how to build and run code. TensorFlow
Lite for Microcontrollers has a Makefile defined in micro/tools/make/Makefile; there’s
more information about it in Chapter 13.

To run our tests using Make, we can issue the following command, making sure we’re
running it from the root of the tensorflow directory we downloaded with Git. We first
specify the Makefile to use, followed by the target, which is the component that we
want to build:

make -f tensorflow/lite/micro/tools/make/Makefile test_hello_world_test

The Makefile is set up so that in order to run tests, we provide a target with the prefix
test_ followed by the name of the component that we want to build. In our case, that
component is hello_world_test, so the full target name is test_hello_world_test.

Try running this command. You should start to see a ton of output fly past! First,
some necessary libraries and tools will be downloaded. Next, our test file, along with
all of its dependencies, will be built. Our Makefile has instructed the C++ compiler to
build the code and create a binary, which it will then run.

You’ll need to wait a few moments for the process to complete. When the text stops
zooming past, the last few lines should look like this:
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Testing LoadModelAndPerformInference
1/1 tests passed
~~~ALL TESTS PASSED~~~

Nice! This output shows that our test passed as expected. You can see the name of the
test, LoadModelAndPerformInference, as defined at the top of its source file. Even if
it’s not on a microcontroller yet, our code is successfully running inference.

To see what happens when tests fail, let’s introduce an error. Open up the test file,
hello_world_test.cc. It will be at this path, relative to the root of the directory:

tensorflow/lite/micro/examples/hello_world/hello_world_test.cc

To make the test fail, let’s provide a different input to the model. This will cause the
model’s output to change, so the assertion that checks the value of our output will fail.
Find the following line:

input->data.f[0] = 0.;

Change the assigned value, like so:

input->data.f[0] = 1.;

Now save the file, and use the following command to run the test again (remember to
do this from the root of the tensorflow directory):

make -f tensorflow/lite/micro/tools/make/Makefile test_hello_world_test

The code will be rebuilt, and the test will run. The final output you see should look
like this:

Testing LoadModelAndPerformInference
0.0486171 near value failed at tensorflow/lite/micro/examples/hello_world/\
  hello_world_test.cc:94
0/1 tests passed
~~~SOME TESTS FAILED~~~

The output contains some useful information about why the test failed, including the
file and line number where the failure took place (hello_world_test.cc:94). If this
were caused by a real bug, this output would be helpful in tracking down the issue.

Project File Structure
With the help of our test, you’ve learned how to use the TensorFlow Lite for Micro‐
controllers library to run inference in C++. Next, we’re going to walk through the
source code of an actual application.

As discussed earlier, the program we’re building consists of a continuous loop that
feeds an x value into the model, runs inference, and uses the result to produce some
sort of visible output (like a pattern of flashing LEDs), depending on the platform.
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Because the application is complex and spans multiple files, let’s take a look at its
structure and how it all fits together.

The root of the application is in tensorflow/lite/micro/examples/hello_world. It con‐
tains the following files:

BUILD
A file that lists the various things that can be built using the application’s source
code, including the main application binary and the tests we walked through ear‐
lier. We don’t need to worry too much about it at this point.

Makefile.inc
A Makefile that contains information about the build targets within our applica‐
tion, including hello_world_test, which is the test we ran earlier, and hello_world,
the main application binary. It defines which source files are part of them.

README.md
A readme file containing instructions on building and running the application.

constants.h, constants.cc
A pair of files containing various constants (variables that don’t change during the
lifetime of a program) that are important for defining the program’s behavior.

create_sine_model.ipynb
The Jupyter notebook used in the previous chapter.

hello_world_test.cc
A test that runs inference using our model.

main.cc
The entry point of the program, which runs first when the application is
deployed to a device.

main_functions.h, main_functions.cc
A pair of files that define a setup() function, which performs all the initialization
required by our program, and a loop() function, which contains the program’s
core logic and is designed to be called repeatedly in a loop. These functions are
called by main.cc when the program starts.

output_handler.h, output_handler.cc
A pair of files that define a function we can use to display an output each time
inference is run. The default implementation, in output_handler.cc, prints the
result to the screen. We can override this implementation so that it does different
things on different devices.
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output_handler_test.cc
A test that proves that the code in output_handler.h and output_handler.cc is
working correctly.

sine_model_data.h, sine_model_data.cc
A pair of files that define an array of data representing our model, as exported
using xxd in the first part of this chapter.

In addition to these files, the directory contains the following subdirectories (and
perhaps more):

• arduino/
• disco_f76ng/
• sparkfun_edge/

Because different microcontroller platforms have different capabilities and APIs, our
project structure allows us to provide device-specific versions of source files that will
be used instead of the defaults if the application is built for that device. For example,
the arduino directory contains custom versions of main.cc, constants.cc, and out‐
put_handler.cc that tailor the application to work with Arduino. We dig into these
custom implementations later.

Walking Through the Source
Now that we know how the application’s source is structured, let’s dig into the code.
We’ll begin with main_functions.cc, where most of the magic happens, and branch out
into the other files from there.

A lot of this code will look very familiar from our earlier adven‐
tures in hello_world_test.cc. If we’ve covered something already, we
won’t go into depth on how it works; we’d rather focus mainly on
the things you haven’t seen before.

Starting with main_functions.cc
This file contains the core logic of our program. It begins like this, with some familiar
#include statements and some new ones:

#include "tensorflow/lite/micro/examples/hello_world/main_functions.h"
#include "tensorflow/lite/micro/examples/hello_world/constants.h"
#include "tensorflow/lite/micro/examples/hello_world/output_handler.h"
#include "tensorflow/lite/micro/examples/hello_world/sine_model_data.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
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#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"

We saw a lot of these in hello_world_test.cc. New to the scene are constants.h and out‐
put_handler.h, which we learned about in the list of files earlier.

The next part of the file sets up the global variables that will be used within
main_functions.cc:

namespace {
tflite::ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
TfLiteTensor* input = nullptr;
TfLiteTensor* output = nullptr;
int inference_count = 0;

// Create an area of memory to use for input, output, and intermediate arrays.
// Finding the minimum value for your model may require some trial and error.
constexpr int kTensorArenaSize = 2 × 1024;
uint8_t tensor_arena[kTensorArenaSize];
}  // namespace

You’ll notice that these variables are wrapped in a namespace. This means that even
though they will be accessible from anywhere within main_functions.cc, they won’t be
accessible from any other files within the project. This helps prevent problems if two
different files happen to define variables with the same name.

All of these variables should look familiar from the tests. We set up variables to hold
all of our familiar TensorFlow objects, along with a tensor_arena. The only new
thing is an int that holds inference_count, which will keep track of how many
inferences our program has performed.

The next part of the file declares a function named setup(). This function will be
called when the program first starts, but never again after that. We use it to do all of
the one-time housekeeping work that needs to happen before we start running infer‐
ence.

The first part of setup() is almost exactly the same as in our tests. We set up logging,
load our model, set up the interpreter, and allocate memory:

void setup() {
  // Set up logging.
  static tflite::MicroErrorReporter micro_error_reporter;
  error_reporter = &micro_error_reporter;

  // Map the model into a usable data structure. This doesn't involve any
  // copying or parsing, it's a very lightweight operation.
  model = tflite::GetModel(g_sine_model_data);
  if (model->version() != TFLITE_SCHEMA_VERSION) {
    error_reporter->Report(
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        "Model provided is schema version %d not equal "
        "to supported version %d.",
        model->version(), TFLITE_SCHEMA_VERSION);
    return;
  }

  // This pulls in all the operation implementations we need.
  static tflite::ops::micro::AllOpsResolver resolver;

  // Build an interpreter to run the model with.
  static tflite::MicroInterpreter static_interpreter(
      model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
  interpreter = &static_interpreter;

  // Allocate memory from the tensor_arena for the model's tensors.
  TfLiteStatus allocate_status = interpreter->AllocateTensors();
  if (allocate_status != kTfLiteOk) {
    error_reporter->Report("AllocateTensors() failed");
    return;
  }

Familiar territory so far. After this point, though, things get a little different. First, we
grab pointers to both the input and output tensors:

  // Obtain pointers to the model's input and output tensors.
  input = interpreter->input(0);
  output = interpreter->output(0);

You might be wondering how we can interact with the output before inference has
been run. Well, remember that TfLiteTensor is just a struct that has a member, data,
pointing to an area of memory that has been allocated to store the output. Even
though no output has been written yet, the struct and its data member still exist.

Finally, to end the setup() function, we set our inference_count variable to 0:

  // Keep track of how many inferences we have performed.
  inference_count = 0;
}

At this point, all of our machine learning infrastructure is set up and ready to go. We
have all the tools required to run inference and get the results. The next thing to
define is our application logic. What is the program actually going to do?

Our model was trained to predict the sine of any number from 0 to 2π, which repre‐
sents the full cycle of a sine wave. To demonstrate our model, we could just feed in
numbers in this range, predict their sines, and then output the values somehow. We
could do this in a sequence so that we show the model working across the entire
range. This sounds like a good plan!
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To do this, we need to write some code that runs in a loop. First, we declare a func‐
tion called loop(), which is what we’ll be walking through next. The code we place in
this function will be run repeatedly, over and over again:

void loop() {

First in our loop() function, we must determine what value to pass into the model
(let’s call it our x value). We determine this using two constants: kXrange, which
specifies the maximum possible x value as 2π, and kInferencesPerCycle, which
defines the number of inferences that we want to perform as we step from 0 to 2π.
The next few lines of code calculate the x value:

// Calculate an x value to feed into the model. We compare the current
// inference_count to the number of inferences per cycle to determine
// our position within the range of possible x values the model was
// trained on, and use this to calculate a value.
float position = static_cast<float>(inference_count) /
                    static_cast<float>(kInferencesPerCycle);
float x_val = position * kXrange;

The first two lines of code just divide inference_count (which is the number of
inferences we’ve done so far) by kInferencesPerCycle to obtain our current “posi‐
tion” within the range. The next line multiplies that value by kXrange, which repre‐
sents the maximum value in the range (2π). The result, x_val, is the value we’ll be
passing into our model.

static_cast<float>() is used to convert inference_count and
kInferencesPerCycle, which are both integer values, into floating-
point numbers. We do this so that we can correctly perform divi‐
sion. In C++, if you divide two integers, the result is an integer; any
fractional part of the result is dropped. Because we want our x
value to be a floating-point number that includes the fractional
part, we need to convert the numbers being divided into floating
points.

The two constants we use, kInferencesPerCycle and kXrange, are defined in the files
constants.h and constants.cc. It’s a C++ convention to prefix the names of constants
with a k, so they’re easily identifiable as constants when using them in code. It can be
useful to define constants in a separate file so they can be included and used in any
place that they are needed.

The next part of our code should look nice and familiar; we write our x value to the
model’s input tensor, run inference, and then grab the result (let’s call it our y value)
from the output tensor:

// Place our calculated x value in the model's input tensor
input->data.f[0] = x_val;
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// Run inference, and report any error
TfLiteStatus invoke_status = interpreter->Invoke();
if (invoke_status != kTfLiteOk) {
  error_reporter->Report("Invoke failed on x_val: %f\n",
                         static_cast<double>(x_val));
  return;
}

// Read the predicted y value from the model's output tensor
float y_val = output->data.f[0];

We now have a sine value. Since it takes a small amount of time to run inference on
each number, and this code is running in a loop, we’ll be generating a sequence of
sine values over time. This will be perfect for controlling some blinking LEDs or an
animation. Our next job is to output it somehow.

The following line calls the HandleOutput() function, defined in output_handler.cc:

// Output the results. A custom HandleOutput function can be implemented
// for each supported hardware target.
HandleOutput(error_reporter, x_val, y_val);

We pass in our x and y values, along with our ErrorReporter instance, which we can
use to log things. To see what happens next, let’s explore output_handler.cc.

Handling Output with output_handler.cc
The file output_handler.cc defines our HandleOutput() function. Its implementation
is very simple:

void HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
                  float y_value) {
  // Log the current X and Y values
  error_reporter->Report("x_value: %f, y_value: %f\n", x_value, y_value);
}

All this function does is use the ErrorReporter instance to log the x and y values.
This is just a bare-minimum implementation that we can use to test the basic func‐
tionality of our application, for example by running it on our development computer.

Our goal, though, is to deploy this application to several different microcontroller
platforms, using each platform’s specialized hardware to display the output. For each
individual platform we’re planning to deploy to, such as Arduino, we provide a cus‐
tom replacement for output_handler.cc that uses the platform’s APIs to control output
—for example, by lighting some LEDs.

As mentioned earlier, these replacement files are located in subdirectories with the
name of each platform: arduino/, disco_f76ng/, and sparkfun_edge/. We’ll dive into the
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platform-specific implementations later. For now, let’s jump back into main_func‐
tions.cc.

Wrapping Up main_functions.cc
The last thing we do in our loop() function is increment our inference_count
counter. If it has reached the maximum number of inferences per cycle defined in
kInferencesPerCycle, we reset it to 0:

// Increment the inference_counter, and reset it if we have reached
// the total number per cycle
inference_count += 1;
if (inference_count  >= kInferencesPerCycle) inference_count = 0;

The next time our loop iterates, this will have the effect of either moving our x value
along by a step or wrapping it around back to 0 if it has reached the end of the range.

We’ve now reached the end of our loop() function. Each time it runs, a new x value is
calculated, inference is run, and the result is output by HandleOutput(). If loop() is
continually called, it will run inference for a progression of x values in the range 0 to
2π and then repeat.

But what is it that makes the loop() function run over and over again? The answer
lies in the file main.cc.

Understanding main.cc
The C++ standard specifies that every C++ program contain a global function named
main(), which will be run when the program starts. In our program, this function is
defined in the file main.cc. The existence of this main() function is the reason main.cc
represents the entry point of our program. The code in main() will be run any time
the microcontroller starts up.

The file main.cc is very short and sweet. First, it contains an #include statement for
main_functions.h, which will bring in the setup() and loop() functions defined
there:

#include "tensorflow/lite/micro/examples/hello_world/main_functions.h"

Next, it declares the main() function itself:

int main(int argc, char* argv[]) {
  setup();
  while (true) {
    loop();
  }
}
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When main() runs, it first calls our setup() function. It will do this only once. After
that, it enters a while loop that will continually call the loop() function, over and
over again.

This loop will keep running indefinitely. Yikes! If you’re from a server or web pro‐
gramming background, this might not sound like a great idea. The loop will block
our single thread of execution, and there’s no way to exit the program.

However, when writing software for microcontrollers, this type of endless loop is
actually pretty common. Because there’s no multitasking, and only one application
will ever run, it doesn’t really matter that the loop goes on and on. We just continue
making inferences and outputting data for as long as the microcontroller is connec‐
ted to power.

We’ve now walked through our entire microcontroller application. In the next sec‐
tion, we’ll try out the application code by running it on our development machine.

Running Our Application
To give our application code a test run, we first need to build it. Enter the following
Make command to create an executable binary for our program:

make -f tensorflow/lite/micro/tools/make/Makefile hello_world

When the build completes, you can run the application binary by using the following
command, depending on your operating system:

# macOS:
tensorflow/lite/micro/tools/make/gen/osx_x86_64/bin/hello_world

# Linux:
tensorflow/lite/micro/tools/make/gen/linux_x86_64/bin/hello_world

# Windows
tensorflow/lite/micro/tools/make/gen/windows_x86_64/bin/hello_world

If you can’t find the correct path, list the directories in tensorflow/lite/micro/tools/
make/gen/.

After you run the binary, you should hopefully see a bunch of output scrolling past,
looking something like this:

x_value: 1.4137159*2^1, y_value: 1.374213*2^-2

x_value: 1.5707957*2^1, y_value: -1.4249528*2^-5

x_value: 1.7278753*2^1, y_value: -1.4295994*2^-2

x_value: 1.8849551*2^1, y_value: -1.2867725*2^-1

x_value: 1.210171*2^2, y_value: -1.7542461*2^-1
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Very exciting! These are the logs written by the HandleOutput() function in out‐
put_handler.cc. There’s one log per inference, and the x_value gradually increments
until it reaches 2π, at which point it goes back to 0 and starts again.

As soon as you’ve had enough excitement, you can press Ctrl-C to terminate the pro‐
gram.

You’ll notice that the numbers are output as values with power-of-
two exponents, like 1.4137159*2^1. This is an efficient way to log
floating-point numbers on microcontrollers, which often don’t
have hardware support for floating-point operations.
To get the original value, just pull out your calculator: for example,
1.4137159*2^1 evaluates to 2.8274318. If you’re curious, the code
that prints these numbers is in debug_log_numbers.cc.

Wrapping Up
We’ve now confirmed the program works on our development machine. In the next
chapter, we’ll get it running on some microcontrollers!
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CHAPTER 6

The “Hello World” of TinyML:
Deploying to Microcontrollers

Now it’s time to get our hands dirty. Over the course of this chapter, we will deploy
the code to three different devices:

• Arduino Nano 33 BLE Sense
• SparkFun Edge
• ST Microelectronics STM32F746G Discovery kit

We’ll walk through the build and deployment process for each one.

TensorFlow Lite regularly adds support for new devices, so if the
device you’d like to use isn’t listed here, it’s worth checking the
example’s README.md.
You can also check there for updated deployment instructions if
you run into trouble following these steps.

Every device has its own unique output capabilities, ranging from a bank of LEDs to a
full LCD display, so the example contains a custom implementation of HandleOut
put() for each one. We’ll also walk through each of these and talk about how its logic
works. Even if you don’t have all of the devices, reading through this code should be
interesting, so we strongly recommend taking a look.
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What Exactly Is a Microcontroller?
Depending on your past experience, you might not be familiar with how microcon‐
trollers interact with other electronic components. Because we’re about to start play‐
ing with hardware, it’s worth introducing some ideas before we move along.

On a microcontroller board like the Arduino, SparkFun Edge, or STM32F746G Dis‐
covery kit, the actual microcontroller is just one of many electronic components
attached to the circuit board. Figure 6-1 shows the microcontroller on the SparkFun
Edge.

Figure 6-1. The SparkFun Edge board with its microcontroller highlighted

The microcontroller is connected to the circuit board it lives on using pins. A typical
microcontroller has dozens of pins, and they serve all sorts of purposes. Some pro‐
vide power to the microcontroller; others connect it to various important compo‐
nents.
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Some pins are set aside for the input and output of digital signals by programs run‐
ning on the microcontroller. These are called GPIO pins, which stands for general-
purpose input/output. They can act as inputs, determining whether a voltage is being
applied to them, or outputs, sourcing current that can power or communicate with
other components.

GPIO pins are digital. This means that in output mode, they are like switches that can
either be fully on, or fully off. In input mode, they can detect whether the voltage
applied to them by another component is either above or below a certain threshold.

In addition to GPIOs, some microcontrollers have analog input pins, which can
measure the exact level of voltage that is being applied to them.

By calling special functions, the program running on a microcontroller can control
whether a given pin is in input or output mode. Other functions are used to switch an
output pin on or off, or to read the current state of an input pin.

Now that you know a bit more about microcontrollers, let’s take a closer look at our
first device: the Arduino.

Arduino
There are a huge variety of Arduino boards, all with different capabilities. Not all of
them will run TensorFlow Lite for Microcontrollers. The board we recommend for
this book is the Arduino Nano 33 BLE Sense. In addition to being compatible with
TensorFlow Lite, it also includes a microphone and an accelerometer (which we use
in later chapters). We recommend buying the version of the board with headers,
which makes it easier to connect other components without soldering.

Most Arduino boards come with a built-in LED, and this is what we’ll be using to vis‐
ually output our sine values. Figure 6-2 shows an Arduino Nano 33 BLE Sense board
with the LED highlighted.
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Figure 6-2. The Arduino Nano 33 BLE Sense board with the LED highlighted

Handling Output on Arduino
Because we have only one LED to work with, we need to think creatively. One option
is to vary the brightness of the LED based on the most recently predicted sine value.
Given that the value ranges from –1 to 1, we could represent 0 with an LED that is
fully off, –1 and 1 with a fully lit LED, and any intermediate values with a partially
dimmed LED. As the program runs inferences in a loop, the LED will fade repeatedly
on and off.

We can vary the number of inferences we perform across a full sine wave cycle using
the kInferencesPerCycle constant. Because one inference takes a set amount of
time, tweaking kInferencesPerCycle, defined in constants.cc, will adjust how fast the
LED fades.

There’s an Arduino-specific version of this file in hello_world/arduino/constants.cc.
The file has been given the same name as hello_world/constants.cc, so it will be used
instead of the original implementation when the application is built for Arduino.

To dim our built-in LED, we can use a technique called pulse width modulation
(PWM). If we switch an output pin on and off extremely rapidly, the pin’s output
voltage becomes a factor of the ratio between time spent in the off and on states. If the
pin spends 50% of the time in each state, its output voltage will be 50% of its maxi‐
mum. If it spends 75% in the on state and 25% in the off state, its voltage will be 75%
of its maximum.

PWM is only available on certain pins of certain Arduino devices, but it’s very easy to
use: we just call a function that sets our desired output level for the pin.
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The code that implements output handling for Arduino is in hello_world/arduino/
output_handler.cc, which is used instead of the original file, hello_world/
output_handler.cc.

Let’s walk through the source:

#include "tensorflow/lite/micro/examples/hello_world/output_handler.h"
#include "Arduino.h"
#include "tensorflow/lite/micro/examples/hello_world/constants.h"

First, we include some header files. Our output_handler.h specifies the interface for
this file. Arduino.h provides the interface for the Arduino platform; we use this to
control the board. Because we need access to kInferencesPerCycle, we also include
constants.h.

Next, we define the function and instruct it what to do the first time it runs:

// Adjusts brightness of an LED to represent the current y value
void HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
                  float y_value) {
// Track whether the function has run at least once
static bool is_initialized = false;

// Do this only once
if (!is_initialized) {
  // Set the LED pin to output
  pinMode(LED_BUILTIN, OUTPUT);
  is_initialized = true;
}

In C++, a variable declared as static within a function will hold its value across mul‐
tiple runs of the function. Here, we use the is_initialized variable to track whether
the code in the following if (!is_initialized) block has ever been run before.

The initialization block calls Arduino’s pinMode() function, which indicates to the
microcontroller whether a given pin should be in input or output mode. This is nec‐
essary before using a pin. The function is called with two constants defined by the
Arduino platform: LED_BUILTIN and OUTPUT. LED_BUILTIN represents the pin connec‐
ted to the board’s built-in LED, and OUTPUT represents output mode.

After configuring the built-in LED’s pin to output mode, set is_initialized to true
so that this block code will not run again.

Next up, we calculate the desired brightness of the LED:

// Calculate the brightness of the LED such that y=-1 is fully off
// and y=1 is fully on. The LED's brightness can range from 0-255.
int brightness = (int)(127.5f * (y_value + 1));

The Arduino allows us to set the level of a PWM output as a number from 0 to 255,
where 0 means fully off and 255 means fully on. Our y_value is a number between –1
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and 1. The preceding code maps y_value to the range 0 to 255 so that when y = -1
the LED is fully off, when y = 0 the LED is half lit, and when y = 1 the LED is fully
lit.

The next step is to actually set the LED’s brightness:

// Set the brightness of the LED. If the specified pin does not support PWM,
// this will result in the LED being on when y > 127, off otherwise.
analogWrite(LED_BUILTIN, brightness);

The Arduino platform’s analogWrite() function takes a pin number (we provide
LED_BUILTIN) and a value between 0 and 255. We provide our brightness, calculated
in the previous line. When this function is called, the LED will be lit at that level.

Unfortunately, on some models of Arduino boards, the pin that the
built-in LED is connected to is not capable of PWM. This means
our calls to analogWrite() won’t vary its brightness. Instead, the
LED will be switched on if the value passed into analogWrite() is
above 127, and switched off if it is 126 or below.
This means the LED will flash on and off instead of fading. Not
quite as cool, but it still demonstrates our sine wave prediction.

Finally, we use the ErrorReporter instance to log the brightness value:

// Log the current brightness value for display in the Arduino plotter
error_reporter->Report("%d\n", brightness);

On the Arduino platform, the ErrorReporter is set up to log data via a serial port.
Serial is a very common way for microcontrollers to communicate with host comput‐
ers, and it’s often used for debugging. It’s a communication protocol in which data is
communicated one bit at a time by switching an output pin on and off. We can use it
to send and receive anything, from raw binary data to text and numbers.

The Arduino IDE contains tools for capturing and displaying data received through a
serial port. One of the tools, the Serial Plotter, can display a graph of values it receives
via serial. By outputting a stream of brightness values from our code, we’ll be able to
see them graphed. Figure 6-3 shows this in action.
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Figure 6-3. The Arduino IDE’s Serial Plotter

We provide instructions on how to use the Serial Plotter later in this section.

You might be wondering how the ErrorReporter is able to output
data via Arduino’s serial interface. You can find the code implemen‐
tation in micro/arduino/debug_log.cc. It replaces the original imple‐
mentation at micro/debug_log.cc.
Just like how output_handler.cc is overwritten, we can provide
platform-specific implementations of any source file in TensorFlow
Lite for Microcontrollers by adding them to a directory with the
platform’s name.

Running the Example
Our next task is to build the project for Arduino and deploy it to a device.

There’s always a chance that the build process might have changed
since this book was written, so check README.md for the latest
instructions.

Here’s everything that we’ll need:

• A supported Arduino board (we recommend the Arduino Nano 33 BLE Sense)
• The appropriate USB cable
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• The Arduino IDE (you’ll need to download and install this before continuing)

The projects in this book are available as example code in the TensorFlow Lite Ardu‐
ino library, which you can easily install via the Arduino IDE and select Manage Libra‐
ries from the Tools menu. In the window that appears, search for and install the
library named Arduino_TensorFlowLite. You should be able to use the latest version,
but if you run into issues, the version that was tested with this book is 1.14-ALPHA.

You can also install the library from a .zip file, which you can either
download from the TensorFlow Lite team or generate yourself
using the TensorFlow Lite for Microcontrollers Makefile. If you’d
prefer to do this, see Appendix A.

After you’ve installed the library, the hello_world example will show up in the File
menu under Examples→_Arduino_TensorFlowLite_, as shown in Figure 6-4.

106 | Chapter 6: The “Hello World” of TinyML: Deploying to Microcontrollers

https://oreil.ly/c-rv6
https://oreil.ly/blgB8


Figure 6-4. The Examples menu

Click “hello_world” to load the example. It will appear as a new window, with a tab
for each of the source files. The file in the first tab, hello_world, is equivalent to the
main_functions.cc we walked through earlier.

Differences in the Arduino Example Code
When the Arduino library is generated, some minor changes are made to the code so
that it works nicely with the Arduino IDE. This means that there are some subtle dif‐
ferences between the code in our Arduino example and in the TensorFlow GitHub
repository. For example, in the hello_world file, the setup() and loop() functions are
called automatically by the Arduino environment, so the main.cc file and its main()
function aren’t needed.
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The Arduino IDE also expects the source files to have the .cpp extension, instead
of .cc. In addition, since the Arduino IDE doesn’t support subfolders, each filename in
the Arduino example is prefixed with its original subfolder name. For example, ardu‐
ino_constants.cpp is equivalent to the file originally named arduino/constants.cc.

Beyond a few minor differences, however, the code remains mostly unchanged.

To run the example, plug in your Arduino device via USB. Make sure the correct
device type is selected from the Board drop-down list in the Tools menu, as shown in
Figure 6-5.

Figure 6-5. The Board drop-down list

If your device’s name doesn’t appear in the list, you’ll need to install its support pack‐
age. To do this, click Boards Manager. In the window that appears, search for your
device and install the latest version of the corresponding support package.

Next, make sure the device’s port is selected in the Port drop-down list, also in the
Tools menu, as shown in Figure 6-6.

108 | Chapter 6: The “Hello World” of TinyML: Deploying to Microcontrollers



Figure 6-6. The Port drop-down list

Finally, in the Arduino window, click the upload button (highlighted in white in
Figure 6-7) to compile and upload the code to your Arduino device.

Figure 6-7. The upload button, a right-facing arrow

After the upload has successfully completed you should see the LED on your Arduino
board begin either fading in and out or flashing on and off, depending on whether
the pin it is attached to supports PWM.

Congratulations: you’re running ML on-device!

Different models of Arduino boards have different hardware, and
will run inference at varying speeds. If your LED is either flickering
or stays fully on, you might need to increase the number of inferen‐
ces per cycle. You can do this via the kInferencesPerCycle con‐
stant in arduino_constants.cpp.
“Making Your Own Changes” on page 111 shows you how to edit
the example’s code.

You can also view the brightness value plotted on a graph. To do this, open the Ardu‐
ino IDE’s Serial Plotter by selecting it in the Tools menu, as shown in Figure 6-8.
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Figure 6-8. The Serial Plotter menu option

The plotter shows the value as it changes over time, as demonstrated in Figure 6-9.

Figure 6-9. The Serial Plotter graphing the value

To view the raw data that is received from the Arduino’s serial port, open the Serial
Monitor from the Tools menu. You’ll see a stream of numbers flying past, like in
Figure 6-10.
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Figure 6-10. The Serial Monitor displaying raw data

Making Your Own Changes
Now that you’ve deployed the application, it might be fun to play around and make
some changes to the code. You can edit the source files in the Arduino IDE. When
you save, you’ll be prompted to resave the example in a new location. When you’re
done making changes, you can click the upload button in the Arduino IDE to build
and deploy.

To get started making changes, here are a few experiments you could try:

• Make the LED blink slower or faster by adjusting the number of inferences per
cycle.

• Modify output_handler.cc to log a text-based animation to the serial port.
• Use the sine wave to control other components, like additional LEDs or sound

generators.

SparkFun Edge
The SparkFun Edge development board was designed specifically as a platform for
experimenting with machine learning on tiny devices. It has a power-efficient Ambiq
Apollo 3 microcontroller with an Arm Cortex M4 processor core.

It features a bank of four LEDs, as shown in Figure 6-11. We use these to visually out‐
put our sine values.
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Figure 6-11. The SparkFun Edge’s four LEDs

Handling Output on SparkFun Edge
We can use the board’s bank of LEDs to make a simple animation, because nothing
says cutting-edge AI like blinkenlights.

The LEDs (red, green, blue, and yellow) are physically lined up in the following
order:

                         [ R G B Y ]

The following table represents how we will light the LEDs for different y values:

Range LEDs lit
0.75 ⇐ y ⇐ 1 [ 0 0 1 1 ]

0 < y < 0.75 [ 0 0 1 0 ]

y = 0 [ 0 0 0 0 ]

-0.75 < y < 0 [ 0 1 0 0 ]
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Range LEDs lit
-1 ⇐ y ⇐ 0.75 [ 1 1 0 0 ]

Each inference takes a certain amount of time, so tweaking kInferencesPerCycle,
defined in constants.cc, will adjust how fast the LEDs cycle.

Figure 6-12 shows a still from an animated .gif of the program running.

Figure 6-12. A still from the animation of the SparkFun Edge’s LEDs

The code that implements output handling for the SparkFun Edge is in hello_world/
sparkfun_edge/output_handler.cc, which is used instead of the original file,
hello_world/output_handler.cc.

Let’s start walking through it:

#include "tensorflow/lite/micro/examples/hello_world/output_handler.h"
#include "am_bsp.h"

First, we include some header files. Our output_handler.h specifies the interface for
this file. The other file, am_bsp.h, comes from something called the Ambiq Apollo3
SDK. Ambiq is the manufacturer of the SparkFun Edge’s microcontroller, which is
called the Apollo3. The SDK (short for software development kit) is a collection of
source files that define constants and functions that can be used to control the micro‐
controller’s features.

Because we are planning to control the board’s LEDs, we need to be able to switch the
microcontroller’s pins on and off. This is what we use the SDK for.
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The Makefile will automatically download the SDK when we even‐
tually build the project. If you’re curious, you can read more about
it or download the code to explore on SparkFun’s website.

Next, we define the HandleOutput() function and indicate what to do on its first run:

void HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
                  float y_value) {
  // The first time this method runs, set up our LEDs correctly
  static bool is_initialized = false;
  if (!is_initialized) {
    // Set up LEDs as outputs
    am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_RED, g_AM_HAL_GPIO_OUTPUT_12);
    am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_BLUE, g_AM_HAL_GPIO_OUTPUT_12);
    am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_GREEN, g_AM_HAL_GPIO_OUTPUT_12);
    am_hal_gpio_pinconfig(AM_BSP_GPIO_LED_YELLOW, g_AM_HAL_GPIO_OUTPUT_12);
    // Ensure all pins are cleared
    am_hal_gpio_output_clear(AM_BSP_GPIO_LED_RED);
    am_hal_gpio_output_clear(AM_BSP_GPIO_LED_BLUE);
    am_hal_gpio_output_clear(AM_BSP_GPIO_LED_GREEN);
    am_hal_gpio_output_clear(AM_BSP_GPIO_LED_YELLOW);
    is_initialized = true;
  }

Phew, that’s a lot of setup! We’re using the am_hal_gpio_pinconfig() function, pro‐
vided by am_bsp.h, to configure the pins connected to the board’s built-in LEDs,
putting them into output mode (represented by the g_AM_HAL_GPIO_OUTPUT_12 con‐
stant). The pin number of each LED is represented by a constant, such as
AM_BSP_GPIO_LED_RED.

We then clear all of the outputs using am_hal_gpio_output_clear(), so the LEDs are
all switched off.

As in the Arduino implementation, we use a static variable named is_initialized
to ensure the code in this block is run only once.

Next, we determine which LEDs should be lit if the y value is negative:

// Set the LEDs to represent negative values
if (y_value < 0) {
  // Clear unnecessary LEDs
  am_hal_gpio_output_clear(AM_BSP_GPIO_LED_GREEN);
  am_hal_gpio_output_clear(AM_BSP_GPIO_LED_YELLOW);
  // The blue LED is lit for all negative values
  am_hal_gpio_output_set(AM_BSP_GPIO_LED_BLUE);
  // The red LED is lit in only some cases
  if (y_value <= -0.75) {
    am_hal_gpio_output_set(AM_BSP_GPIO_LED_RED);
  } else {
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    am_hal_gpio_output_clear(AM_BSP_GPIO_LED_RED);
  }

First, in case the y value only just became negative, we clear the two LEDs that are
used to indicate positive values. Next, we call am_hal_gpio_output_set() to switch
on the blue LED, which will always be lit if the value is negative. Finally, if the value is
less than –0.75, we switch on the red LED. Otherwise, we switch it off.

Next up, we do the same thing but for positive values of y:

  // Set the LEDs to represent positive values
} else if (y_value > 0) {
  // Clear unnecessary LEDs
  am_hal_gpio_output_clear(AM_BSP_GPIO_LED_RED);
  am_hal_gpio_output_clear(AM_BSP_GPIO_LED_BLUE);
  // The green LED is lit for all positive values
  am_hal_gpio_output_set(AM_BSP_GPIO_LED_GREEN);
  // The yellow LED is lit in only some cases
  if (y_value >= 0.75) {
    am_hal_gpio_output_set(AM_BSP_GPIO_LED_YELLOW);
  } else {
    am_hal_gpio_output_clear(AM_BSP_GPIO_LED_YELLOW);
  }
}

That’s just about it for the LEDs. The last thing we do is log the current output values
to anyone who is listening on the serial port:

// Log the current X and Y values
error_reporter->Report("x_value: %f, y_value: %f\n", x_value, y_value);

Our ErrorReporter is able to output data via the SparkFun Edge’s
serial interface due to a custom implementation of micro/spark‐
fun_edge/debug_log.cc that replaces the original implementation at
mmicro/debug_log.cc.

Running the Example
Now we can build the sample code and deploy it to the SparkFun Edge.

There’s always a chance that the build process might have changed
since this book was written, so check README.md for the latest
instructions.

To build and deploy our code, we’ll need the following:

• A SparkFun Edge board
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• A USB programmer (we recommend the SparkFun Serial Basic Breakout, which
is available in micro-B USB and USB-C variants)

• A matching USB cable
• Python 3 and some dependencies

Python and Dependencies
This process involves running some Python scripts. Before continuing, you should
make sure that you have Python 3 installed. To check whether it’s present on your sys‐
tem, open a terminal and enter the following:

python --version

If you have Python 3 installed, you will see the following output (where x and y are
minor version numbers; the exact ones don’t matter):

Python 3.x.y

If this worked, you can use the command python to run Python scripts later in this
section.

If you saw a different output, try the following command:

python3 --version

You should hopefully see the same output we were looking for earlier:

Python 3.x.y

If you do, this means that you can use the command python3 to run Python scripts
when needed.

If not, you’ll need to install Python 3 on your system. Search the web for instructions
on installing it for your specific operating system.

After you’ve installed Python 3, you’ll have to install some dependencies. Run the fol‐
lowing command to do so (if your Python command is python3, you should use the
command pip3 instead of pip):

pip install pycrypto pyserial --user

After you’ve installed the dependencies, you’re ready to go.

To begin, open a terminal, clone the TensorFlow repository, and then change into its
directory:

git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow
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Next, we’re going to build the binary and run some commands that get it ready for
downloading to the device. To avoid some typing, you can copy and paste these com‐
mands from README.md.

Build the binary
The following command downloads all the required dependencies and then compiles
a binary for the SparkFun Edge:

make -f tensorflow/lite/micro/tools/make/Makefile \
  TARGET=sparkfun_edge hello_world_bin

A binary is a file that contains the program in a form that can be
run directly by the SparkFun Edge hardware.

The binary will be created as a .bin file, in the following location:

tensorflow/lite/micro/tools/make/gen/ \
  sparkfun_edge_cortex-m4/bin/hello_world.bin

To check that the file exists, you can use the following command:

test -f tensorflow/lite/micro/tools/make/gen/ \
  sparkfun_edge_cortex-m4/bin/hello_world.bin \
  &&  echo "Binary was successfully created" || echo "Binary is missing"

If you run that command, you should see Binary was successfully created

printed to the console.

If you see Binary is missing, there was a problem with the build process. If so, it’s
likely that you can find some clues to what went wrong in the output of the make
command.

Sign the binary
The binary must be signed with cryptographic keys to be deployed to the device. Let’s
now run some commands that will sign the binary so it can be flashed to the Spark‐
Fun Edge. The scripts used here come from the Ambiq SDK, which is downloaded
when the Makefile is run.

Enter the following command to set up some dummy cryptographic keys that you
can use for development:

cp tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0/ \
  tools/apollo3_scripts/keys_info0.py \
  tensorflow/lite/micro/tools/make/downloads/AmbiqSuite-Rel2.0.0/ \
  tools/apollo3_scripts/keys_info.py
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Next, run the following command to create a signed binary. Substitute python3 with
python if necessary:

python3 tensorflow/lite/micro/tools/make/downloads/ \
  AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_image_blob.py \
  --bin tensorflow/lite/micro/tools/make/gen/ \
  sparkfun_edge_cortex-m4/bin/hello_world.bin \
  --load-address 0xC000 \
  --magic-num 0xCB -o main_nonsecure_ota \
  --version 0x0

This creates the file main_nonsecure_ota.bin. Now run this command to create a final
version of the file that you can use to flash your device with the script you will use in
the next step:

python3 tensorflow/lite/micro/tools/make/downloads/ \
  AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/create_cust_wireupdate_blob.py \
  --load-address 0x20000 \
  --bin main_nonsecure_ota.bin \
  -i 6 \
  -o main_nonsecure_wire \
  --options 0x1

You should now have a file called main_nonsecure_wire.bin in the directory where
you ran the commands. This is the file you’ll be flashing to the device.

Flash the binary
The SparkFun Edge stores the program it is currently running in its 1 megabyte of
flash memory. If you want the board to run a new program, you need to send it to the
board, which will store it in flash memory, overwriting any program that was previ‐
ously saved.

This process is called flashing. Let’s walk through the steps.

Attach the programmer to the board.    To download new programs to the board, you’ll
use the SparkFun USB-C Serial Basic serial programmer. This device allows your
computer to communicate with the microcontroller via USB.

To attach this device to your board, perform the following steps:

1. On the side of the SparkFun Edge, locate the six-pin header.
2. Plug the SparkFun USB-C Serial Basic into these pins, ensuring that the pins

labeled BLK and GRN on each device are lined up correctly.

You can see the correct arrangement in Figure 6-13.
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Figure 6-13. Connecting the SparkFun Edge and USB-C Serial Basic (image courtesy of
SparkFun)

Attach the programmer to your computer.    Next, connect the board to your computer via
USB. To program the board, you need to determine the name that your computer
gives the device. The best way of doing this is to list all of the computer’s devices
before and after attaching it and then look to see which device is new.

Some people have reported issues with their operating system’s
default drivers for the programmer, so we strongly recommend
installing the driver before you continue.

Before attaching the device via USB, run the following command:

# macOS:
ls /dev/cu*

# Linux:
ls /dev/tty*

This should output a list of attached devices that looks something like the following:

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.MALS
/dev/cu.SOC

Now, connect the programmer to your computer’s USB port and run the command
again:
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# macOS:
ls /dev/cu*

# Linux:
ls /dev/tty*

You should see an extra item in the output, as in the example that follows. Your new
item might have a different name. This new item is the name of the device:

/dev/cu.Bluetooth-Incoming-Port
/dev/cu.MALS
/dev/cu.SOC
/dev/cu.wchusbserial-1450

This name will be used to refer to the device. However, it can change depending on
which USB port the programmer is attached to, so if you disconnect the board from
your computer and then reattach it, you might need to look up its name again.

Some users have reported two devices appearing in the list. If you
see two devices, the correct one to use begins with the letters “wch”;
for example, “/dev/wchusbserial-14410.”

After you’ve identified the device name, put it in a shell variable for later use:

export DEVICENAME=<your device name here>

This is a variable that you can use when running commands that require the device
name, later in the process.

Run the script to flash your board.    To flash the board, you need to put it into a special
“bootloader” state that prepares it to receive the new binary. You can then run a script
to send the binary to the board.

First create an environment variable to specify the baud rate, which is the speed at
which data will be sent to the device:

export BAUD_RATE=921600

Now paste the command that follows into your terminal—but do not press Enter yet!.
The ${DEVICENAME} and ${BAUD_RATE} in the command will be replaced with the val‐
ues you set in the previous sections. Remember to substitute python3 with python if
necessary:

python3 tensorflow/lite/micro/tools/make/downloads/ \
  AmbiqSuite-Rel2.0.0/tools/apollo3_scripts/uart_wired_update.py -b $
{BAUD_RATE} \
  ${DEVICENAME} -r 1 -f main_nonsecure_wire.bin -i 6

Next, you’ll reset the board into its bootloader state and flash the board.
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On the board, locate the buttons marked RST and 14, as shown in Figure 6-14.

Figure 6-14. The SparkFun Edge’s buttons

Perform the following steps:

1. Ensure that your board is connected to the programmer and that the entire thing
is connected to your computer via USB.

2. On the board, press and hold the button marked 14. Continue holding it.
3. While still holding the button marked 14, press the button marked RST to reset

the board.
4. Press Enter on your computer to run the script. Continue holding button 14.

You should now see something like the following appearing on your screen:

Connecting with Corvette over serial port /dev/cu.usbserial-1440...
Sending Hello.
Received response for Hello
Received Status
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length =  0x58
version =  0x3
Max Storage =  0x4ffa0
Status =  0x2
State =  0x7
AMInfo =
0x1
0xff2da3ff
0x55fff
0x1
0x49f40003
0xffffffff
[...lots more 0xffffffff...]
Sending OTA Descriptor =  0xfe000
Sending Update Command.
number of updates needed =  1
Sending block of size  0x158b0  from  0x0  to  0x158b0
Sending Data Packet of length  8180
Sending Data Packet of length  8180
[...lots more Sending Data Packet of length  8180...]

Keep holding button 14 until you see Sending Data Packet of length 8180. You
can release the button after seeing this (but it’s okay if you keep holding it).

The program will continue to print lines on the terminal. Eventually you will see
something like the following:

[...lots more Sending Data Packet of length  8180...]
Sending Data Packet of length  8180
Sending Data Packet of length  6440
Sending Reset Command.
Done.

This indicates a successful flashing.

If the program output ends with an error, check whether Sending
Reset Command. was printed. If so, flashing was likely successful
despite the error. Otherwise, flashing might have failed. Try run‐
ning through these steps again (you can skip over setting the envi‐
ronment variables).
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Testing the Program
The binary should now be deployed to the device. Press the button marked RST to
reboot the board. You should see the device’s four LEDs flashing in sequence. Nice
work!

What If It Didn’t Work?
Here are some possible issues and how to debug them:

Problem: When flashing, the script hangs for a while at Sending Hello. and then
prints an error. Solution: You need to hold down the button marked 14 while running
the script. Hold down button 14, press the RST button, and then run the script while
holding down button 14 the entire time.

Problem: After flashing, none of the LEDs are coming on. Solution: Try pressing the
RST button, or disconnecting the board from the programmer and then reconnecting
it. If neither of these works, try flashing the board again.

Viewing Debug Data
Debug information is logged by the board while the program is running. To view it,
we can monitor the board’s serial port output using a baud rate of 115200. On macOS
and Linux, the following command should work:

screen ${DEVICENAME} 115200

You will see a lot of output flying past! To stop the scrolling, press Ctrl-A, immedi‐
ately followed by Esc. You can then use the arrow keys to explore the output, which
will contain the results of running inference on various x values:

x_value: 1.1843798*2^2, y_value: -1.9542645*2^-1

To stop viewing the debug output with screen, press Ctrl-A, immediately followed by
the K key, and then press the Y key.

The program screen is a helpful utility program for connecting to
other computers. In this case, we’re using it to listen to the data the
SparkFun Edge board is logging via its serial port.

Making Your Own Changes
Now that you’ve deployed the basic application, try playing around and making some
changes. You can find the application’s code in the tensorflow/lite/micro/examples/
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hello_world folder. Just edit and save, and then repeat the previous instructions to
deploy your modified code to the device.

Here are a few things you could try:

• Make the LED blink slower or faster by adjusting the number of inferences per
cycle.

• Modify output_handler.cc to log a text-based animation to the serial port.
• Use the sine wave to control other components, like additional LEDs or sound

generators.

ST Microelectronics STM32F746G Discovery Kit
The STM32F746G is a microcontroller development board with a relatively powerful
Arm Cortex-M7 processor core.

This board runs Arm’s Mbed OS, an embedded operating system designed to make it
easier to build and deploy embedded applications. This means that we can use many
of the instructions in this section to build for other Mbed devices.

The STM32F746G comes with an attached LCD screen, which will allow us to build a
much more elaborate visual display.

Handling Output on STM32F746G
Now that we have an entire LCD to play with, we can draw a nice animation. Let’s use
the x-axis of the screen to represent number of inferences, and the y-axis to represent
the current value of our prediction.

We’ll draw a dot where this value should be, and it will move around the screen as we
loop through the input range of 0 to 2π. Figure 6-15 presents a wireframe of this.
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Figure 6-15. The animation we’ll draw on the LCD display

Each inference takes a certain amount of time, so tweaking kInferencesPerCycle,
defined in constants.cc, will adjust the speed and smoothness of the dot’s motion.

Figure 6-16 shows a still from an animated .gif of the program running.
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Figure 6-16. The code running on an STM32F746G Discovery kit, which has an LCD
display

The code that implements output handling for the STM32F746G is in hello_world/
disco_f746ng/output_handler.cc, which is used instead of the original file, hello_world/
output_handler.cc.

Let’s walk through it:

#include "tensorflow/lite/micro/examples/hello_world/output_handler.h"
#include "LCD_DISCO_F746NG.h"
#include "tensorflow/lite/micro/examples/hello_world/constants.h"

First, we have some header files. Our output_handler.h specifies the interface for this
file. LCD_DISCO_F74NG.h, supplied by the board’s manufacturer, declares the inter‐
face we will use to control its LCD screen. We also include constants.h, since we need
access to kInferencesPerCycle and kXrange.

Next, we set up a ton of variables. First comes an instance of LCD_DISCO_F746NG,
which is defined in LCD_DISCO_F74NG.h and provides methods that we can use to
control the LCD:

// The LCD driver
LCD_DISCO_F746NG lcd;

Details on the LCD_DISCO_F746NG classes are available on the Mbed site.
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Next, we define some constants that control the look and feel of our visuals:

// The colors we'll draw
const uint32_t background_color = 0xFFF4B400;  // Yellow
const uint32_t foreground_color = 0xFFDB4437;  // Red
// The size of the dot we'll draw
const int dot_radius = 10;

The colors are provided as hex values, like 0xFFF4B400. They are in the format
AARRGGBB, where AA represents the alpha value (or opacity, with FF being fully opa‐
que), and RR, GG, and BB represent the amounts of red, green, and blue.

With some practice, you can learn to read the color from the hex
value. 0xFFF4B400 is fully opaque and has a lot of red and a fair
amount of green, which makes it a nice orange-yellow.
You can also look up the values with a quick Google search.

We then declare a few more variables that define the shape and size of our animation:

// Size of the drawable area
int width;
int height;
// Midpoint of the y axis
int midpoint;
// Pixels per unit of x_value
int x_increment;

After the variables, we define the HandleOutput() function and tell it what to do on
its first run:

// Animates a dot across the screen to represent the current x and y values
void HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
                  float y_value) {
  // Track whether the function has run at least once
  static bool is_initialized = false;

  // Do this only once
  if (!is_initialized) {
    // Set the background and foreground colors
    lcd.Clear(background_color);
    lcd.SetTextColor(foreground_color);
    // Calculate the drawable area to avoid drawing off the edges
    width = lcd.GetXSize() - (dot_radius * 2);
    height = lcd.GetYSize() - (dot_radius * 2);
    // Calculate the y axis midpoint
    midpoint = height / 2;
    // Calculate fractional pixels per unit of x_value
    x_increment = static_cast<float>(width) / kXrange;
    is_initialized = true;
  }
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There’s a lot in there! First, we use methods belonging to lcd to set a background and
foreground color. The oddly named lcd.SetTextColor() sets the color of anything
we draw, not just text:

// Set the background and foreground colors
lcd.Clear(background_color);
lcd.SetTextColor(foreground_color);

Next, we calculate how much of the screen we can actually draw to, so that we know
where to plot our circle. If we got this wrong, we might try to draw past the edge of
the screen, with unexpected results:

width = lcd.GetXSize() - (dot_radius * 2);
height = lcd.GetYSize() - (dot_radius * 2);

After that, we determine the location of the middle of the screen, below which our
negative y values will be drawn. We also calculate how many pixels of screen width
represent one unit of our x value. Note how we use static_cast to ensure that we get
a floating-point result:

// Calculate the y axis midpoint
midpoint = height / 2;
// Calculate fractional pixels per unit of x_value
x_increment = static_cast<float>(width) / kXrange;

As we did before, use a static variable named is_initialized to ensure that the
code in this block is run only once.

After initialization is complete, we can start with our output. First, we clear any previ‐
ous drawing:

// Clear the previous drawing
lcd.Clear(background_color);

Next, we use x_value to calculate where along the display’s x-axis we should draw our
dot:

// Calculate x position, ensuring the dot is not partially offscreen,
// which causes artifacts and crashes
int x_pos = dot_radius + static_cast<int>(x_value * x_increment);

We then do the same for our y value. This is a little more complex because we want to
plot positive values above the midpoint and negative values below:

// Calculate y position, ensuring the dot is not partially offscreen
int y_pos;
if (y_value >= 0) {
  // Since the display's y runs from the top down, invert y_value
  y_pos = dot_radius + static_cast<int>(midpoint * (1.f - y_value));
} else {
  // For any negative y_value, start drawing from the midpoint
  y_pos =
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      dot_radius + midpoint + static_cast<int>(midpoint * (0.f - y_value));
}

As soon as we’ve determined its position, we can go ahead and draw the dot:

// Draw the dot
lcd.FillCircle(x_pos, y_pos, dot_radius);

Finally, we use our ErrorReporter to log the x and y values to the serial port:

// Log the current X and Y values
error_reporter->Report("x_value: %f, y_value: %f\n", x_value, y_value);

The ErrorReporter is able to output data via the STM32F746G’s
serial interface due to a custom implementation, micro/
disco_f746ng/debug_log.cc, that replaces the original implementa‐
tion at micro/debug_log.cc.

Running the Example
Next up, let’s build the project! The STM32F746G runs Arm’s Mbed OS, so we’ll be
using the Mbed toolchain to deploy our application to the device.

There’s always a chance that the build process might have changed
since this book was written, so check README.md for the latest
instructions.

Before we begin, we’ll need the following:

• An STM32F746G Discovery kit board
• A mini-USB cable
• The Arm Mbed CLI (follow the Mbed setup guide)
• Python 3 and pip

Like the Arduino IDE, Mbed requires source files to be structured in a certain way.
The TensorFlow Lite for Microcontrollers Makefile knows how to do this for us, and
can generate a directory suitable for Mbed.

To do so, run the following command:

make -f tensorflow/lite/micro/tools/make/Makefile \
  TARGET=mbed TAGS="CMSIS disco_f746ng" generate_hello_world_mbed_project

This results in the creation of a new directory:
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tensorflow/lite/micro/tools/make/gen/mbed_cortex-m4/prj/ \
  hello_world/mbed

This directory contains all of the example’s dependencies structured in the correct
way for Mbed to be able to build it.

First, change into the directory so that your can run some commands in there:

cd tensorflow/lite/micro/tools/make/gen/mbed_cortex-m4/prj/ \
  hello_world/mbed

Now you’ll use Mbed to download the dependencies and build the project.

To get started, use the following command to specify to Mbed that the current direc‐
tory is the root of an Mbed project:

mbed config root .

Next, instruct Mbed to download the dependencies and prepare to build:

mbed deploy

By default, Mbed will build the project using C++98. However, TensorFlow Lite
requires C++11. Run the following Python snippet to modify the Mbed configuration
files so that it uses C++11. You can just type or paste it into the command line:

python -c 'import fileinput, glob;
for filename in glob.glob("mbed-os/tools/profiles/*.json"):
  for line in fileinput.input(filename, inplace=True):
    print(line.replace("\"-std=gnu++98\"","\"-std=c++11\", \"-fpermissive\""))'

Finally, run the following command to compile:

mbed compile -D TF_LITE_STATIC_MEMORY -m DISCO_F746NG -t GCC_ARM

This should result in a binary at the following path:

./BUILD/DISCO_F746NG/GCC_ARM/mbed.bin

One of the nice things about using Mbed-enabled boards like the STM32F746G is
that deployment is really easy. To deploy, just plug in your STM board and copy the
file to it. On macOS, you can do this with the following command:

cp ./BUILD/DISCO_F746NG/GCC_ARM/mbed.bin /Volumes/DIS_F746NG/

Alternately, just find the DIS_F746NG volume in your file browser and drag the file
over.

Copying the file will initiate the flashing process. When this is complete, you should
see an animation on the device’s screen.

In addition to this animation, debug information is logged by the board while the
program is running. To view it, establish a serial connection to the board using a
baud rate of 9600.
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On macOS and Linux, the device should be listed when you issue the following com‐
mand:

ls /dev/tty*

It will look something like the following:

/dev/tty.usbmodem1454203

After you’ve identified the device, use the following command to connect to it,
replacing </dev/tty.devicename> with the name of your device as it appears in /dev:

screen /<dev/tty.devicename> 9600

You will see a lot of output flying past. To stop the scrolling, press Ctrl-A, immedi‐
ately followed by Esc. You can then use the arrow keys to explore the output, which
will contain the results of running inference on various x values:

x_value: 1.1843798*2^2, y_value: -1.9542645*2^-1

To stop viewing the debug output with screen, press Ctrl-A, immediately followed by
the K key, then hit the Y key.

Making Your Own Changes
Now that you’ve deployed the application, it could be fun to play around and make
some changes! You can find the application’s code in the tensorflow/lite/micro/tools/
make/gen/mbed_cortex-m4/prj/hello_world/mbed folder. Just edit and save, and then
repeat the previous instructions to deploy your modified code to the device.

Here are a few things you could try:

• Make the dot move slower or faster by adjusting the number of inferences per
cycle.

• Modify output_handler.cc to log a text-based animation to the serial port.
• Use the sine wave to control other components, like LEDs or sound generators.

Wrapping Up
Over the past three chapters, we’ve gone through the full end-to-end journey of train‐
ing a model, converting it for TensorFlow Lite, writing an application around it, and
deploying it to a tiny device. In the coming chapters, we’ll explore some more sophis‐
ticated and exciting examples that put embedded machine learning to work.

First up, we’ll build an application that recognizes spoken commands using a tiny, 18
KB model.
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